

Documentation
Release 5.0.0.0

XSQUARE - REPORTS

Mar. 04, 2025

Table of сontents

i

1 General information 1
1.1 Introduction to the report server .. 1
1.2 Report server modules ... 1
1.3 Report server installation ... 2
1.4 Examples of use ... 2
1.5 Creating the first report .. 2

2 Architecture and system requirements 3
2.1 Architecture .. 3
2.2 Basic architecture ... 3
2.3 Architecture for highly loaded systems ... 4
2.4 Performance environment .. 5
2.5 System requirements .. 5

3 Installation 6
3.1 Report server installation ... 6

3.1.1 Installing fonts for RPM-based OS .. 6
3.1.2 Installing Libre Office .. 7
3.1.3 Configuration file .json .. 7

4 Operation 9
4.1 Starting the report server ... 9

5 Modules 10
5.1 Service for generating reports from a template document ... 10

5.1.1 General description of the service ... 10
5.1.2 Working with template documents ... 10
5.1.3 Generating a report in DOCX format ... 11
5.1.4 Generating a report in XLSX format .. 34
5.1.5 Convert report to PDF .. 55
5.1.6 Barcode operation ... 56
5.1.7 Working with graphic codes (QR code) ... 57

5.2 PDF report generator .. 57
5.2.1 General description of the service ... 57
5.2.2 Document generation with PDF generator .. 58
5.2.3 Example of a service call ... 61
5.2.4 Generator commands ... 63

ii

5.2.5 Coordinates .. 76
5.2.6 Tags .. 77
5.2.7 Barcode operation ... 78

5.3 PDF merge service ... 79
5.3.1 General description of the service ... 79
5.3.2 Merging PDF documents ... 79

5.4 Print form generation service ... 82
5.4.1 General description of the service ... 82
5.4.2 Generating a printed form from a PDF document ... 83

5.5 Service for converting XLSX documents to JSON, XML, CSV .. 89
5.5.1 General description of the service ... 89

5.6 Service for converting XLS documents to JSON, XML, CSV ... 93
5.6.1 General description of the service ... 93

5.7 Code generation service (QR code) .. 93
5.7.1 General description of the service ... 93

6 Examples 100
6.1 Examples archive ... 100
6.2 Generating a report from the examples archive ... 101

7 My first report 102
7.1 General description ... 102
7.2 First template .. 102
7.3 First request .. 102

7.3.1 Description ... 103
7.3.2 Example request ... 104
7.3.3 Example of a request to save the result to a file without base64 encoding 105

7.4 Receiving the first response ... 105
7.4.1 Returned response format .. 105
7.4.2 Example response .. 106

7.5 Completion ... 106

8 Appendix 107
8.1 Quick installation ... 107

CHAPTER 1

1

General information

1.1 Introduction to the report server
XSQUARE-REPORTS (XREPORTS) is a report server that enables document creation based on template-documents
using HTTP requests. The files in DOCX, XLSX, PDF formats are used as template documents. The client requests
use JSON and XML formats.

The main functions of the report server are:

• generation of reports in DOCX, XLSX, PDF formats,

• merging PDF documents,

• generation of a printed PDF form with a stamp based on a previously generated PDF document,

• export (conversion) of data from XLSX and XLS (Microsoft Office Excel Binary 2003) to JSON, XML, CSV
formats.

1.2 Report server modules
The report server includes the following modules:

• Service for generating reports from a template document

• PDF report generator

• PDF merge service

• Print form generation service

• Export (conversion) service of XLSX and XLS files to JSON, XML, CSV

• Code generation service (QR code)

 Documentation, Release 5.0.0.0

1.3 Installing the report server 2

1.3 Installing the report server
The installation of the report server is described in the Installation section.

1.4 Examples of use
The examples of requests and templates can be found in the Examples section.

1.5 Creating the first report
The process of creating a simple report using the report server is described in My first report.

3

CHAPTER 2

Architecture and system requirements

2.1 Architecture
The application architecture is a web server that processes client HTTP requests by generating reports based on
template documents and returns the result to the client.

2.2 Basic architecture
The principle or basic architecture of the application is as follows for an industrial environment:

READY DOCUMENTS TEMPLATES SET

2.3 Architecture for highly loaded systems 4

 Documentation, Release 5.0.0.0

2.3 Architecture for highly loaded systems
The principle or basic architecture of an application for highly loaded systems:

5 2.4 Performance environment

 Documentation, Release 5.0.0.0

2.4 Performance environment
Supported architecture:

- x86-64

• ARM

• Loongson

Supported OS:

• DEB-based - any

• RPM-based - any

• Debian 12 - recommended

2.5 System requirements
Minimum system requirements:

• CPU - 1 Core

• RAM - 100 MB

• HDD - 100 MB+ Logs

The DOCX/XLSX/PDF generation modules are independent and operate completely autonomously.

Libre Office open source project components are used to convert DOCX/XLSX documents to PDF.

The installation of virtualization/containerization system and the operating system is carried out, if necessary, as per
the needs of the Organization and at the discretion of the Administrator.

6

CHAPTER 3

Installation

3.1 Installing the report server
With Debian as an example, below we review the installation of the report server.

All commands should be run with root privileges.

1. Create a directory for the PGHS distribution

Go to the directory

2. Download/retrieve the distribution to the created directory

3. Install xreports

4. Check the status of the report server

3.1.1 Installing fonts for RPM-based OS

7 3.1 Installing the report server

 Documentation, Release 5.0.0.0

3.1.2 Installing Libre Office
To convert DOCX/XLSX documents to PDF, one needs to install Libre Office components.

1. Download the Libre Office distribution

2. Install Libre Office

3.1.3 Configuration file .json
For the report server to operate, the config.json configuration file must be present in the directory with the service.
The configuration file contains 3 sections:

1. The App descriptor where one can define the basic service settings

• port - string. It specifies the number of the network port on which the service will be started (default is 8886)

• debug - Boolean value. It enables debugging mode, with a detailed log of request processing available, and all
requests and finished documents are saved in the local directory reports_debug of the service (similar to the
enable-debug-report-save flag in the request properties). The default value is false.

• data-directory - string. It defines the absolute path to the directory with report server data (assets, templates,
reports_debug)

• save-file-directory - string. It specifies the absolute path to the directory for saving reports when the report server
is running in the file server mode and returns links to finished reports

• save-file-path-mask string. It specifies a file mask for saving finished reports. The mask supports templated
parameters that can be used when composing the path

– %DOMAIN% - domain, specified in the request options

– %YYYYYY% - current year

® Note

If DOCX/XLSX to PDF conversion is not required, Libre Office installation can be skipped.

"save-file-path-mask": "%DOMAIN%/%YYYY%/%MM%/%DD%/%HH%/%GUID%/

8 3.1 Installing the report server

 Documentation, Release 5.0.0.0

– %MM% - current month

– %DD% - current day

– %HH% - current hour

– %GUID% - random identifier

– %FILENAME% - file name

2. FormatConversion descriptor where the settings for the soffice application from the Libre Office suite are
defined:

• format-conversion-dir - string. It specifies the directory for storing temporary files (by default
- "/tmp")

• soffice-max-process-count - number. It defines the number of processor cores that soffice can use for
conversion (default is "0", use all available cores).

• soffice-path - string. It specifies the path to the soffice executable file (by default - the path written to
environment variables when Libre Office is installed)

If after Libre Office installation soffice startup is not available by name - it is necessary to write the full path in the
"soffice-path" parameter.

For example:

One must restart the report server to apply the new configuration settings.

"formatConversion":

"soffice-max-process-count": 0,

9

CHAPTER 4

Operation

This section describes how to keep the application operational and the order of loading the components.

4.1 Starting the report server

To download xsquare.xreports, the user needs to make sure they have a properly configured configuration file.

The command should display the correct configuration file described in the "Installation" section.

Next, the report server should be started by executing the command:

Afterwards, check the status of the application server:

If errors occur, they will be logged. One can check error messages by executing the command:

A status service handler is also available, which can be accessed to retrieve the status, version, and license settings of
the report server:

10

CHAPTER 5

Modules

5.1 Service for generating reports from a template document

5.1.1 General description of the service
The service generates a report in OOXML format (.docx and .xlsx documents) from a template document by HTTP
request in XML or JSON format. Optionally, the report can be converted to PDF.

The algorithm of the service: tags of the template document are replaced with specific data given in the request.

Main features of the service

1. Generating reports in DOCX format based on a template document. It is possible to generate:

• simple reports in DOCX format,

• multi-reports in DOCX format (reports from one template based on multiple input data).

2. Generating reports in XLSX format based on a template document.

3. Converting reports to PDF format.

5.1.2 Working with template documents
To generate a report, one needs to create a template in DOCX or XLSX format.

Location of template files

Template documents in DOCX and XLSX formats are stored locally in the templates directory located in the service
application directory or in the directory specified by the data-directory option.

5.1 Service for generating reports from a template document 11

 Documentation, Release 5.0.0.0

Template file format

To create template documents, one should use a word processor (MS Word/Excel, LibreOffice Writer/Calc, Google
Docs, etc.).

Important:

• Templates for generating documents in DOCX format must be saved in DOCX format.

• Templates for generating documents in XLSX format must be saved in XLSX or XLSM format.

• Templates for subsequent conversion to PDF should be saved in DOCX format (preferably using Libre Office,
as the resulting PDF will be fully consistent with the visual representation of the document in Libre Office).

Using tags in the template

The document templates can contain tags that will be replaced with input data from the query. The tag is specified in
square brackets. Example: [debt].

In the body of the request, the input data for the tags is contained in input-data. No brackets should be used in the
request (see examples from the section "Request Structure”, the subsections "Generating a DOCX Report" and
"Generating an XLSX Report").

Working with images

The principle of working with images:

• an image is added to the template to be later replaced

• when forming a document, it is replaced by an image file, which is passed in the request. The new content of the
image file encoded in BASE64 or data for dynamic image creation (e.g. QR code) is passed in the request

The image tags in the template are set in the image property "Alt text" without square brackets.

Supported formats: JPEG, PNG.

Limitations for images

1. The image format (JPEG, PNG) in the request must match the format of the image being replaced in the template.

2. If it is necessary to replace several images of the template with different images from the input data, the images
in the template must be also different. This is due to the fact that the image in the document body refers to its
content (file), which means that replacing the content in the document will lead to changing all the images that
refer to this content.

Examples of templates

The example templates can be found in the Examples archive.

5.1.3 Generating a report in DOCX format

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 12

Service description

Service name Service for generating reports from a template document in DOCX format
Service path Simple reports in DOCX format:

• [host]:[port]/word_report_json
• [host]:[port] /word_report_xml

Multi-reports in DOCX format:
• [host]:[port]/word_multi_report_1_N_json
• [host]:[port]/word_multi_report_1_N_xml

Method POST
Parameters The request body must contain an object in JSON or XML format. Read more about the

structure of the request body in the subsection "Request body structure". In response, the
service returns a file in DOCX format encoded in base64. When converting a report to
PDF format, the service returns a base64-encoded PDF file.

 Purpose The service is designed to generate reports in DOCX format from a document-template.

 Conversion to PDF is possible.

Request body structure

The body of the request contains an object in JSON or XML format that includes:

1. Template descriptor.

2. Input data to be substituted into the template instead of tags.

3. Request options.

4. Response format.

Template descriptor

The element (the object) of template descriptor template contains:

• uri - string. It specifies the location of the template document file depending on how the id parameter is
interpreted.

Supported values:

– local - location of the template in the templates directory.

– embedded - the template is included in the request as a base64 encoded string. The value
of the string must be given in the value parameter.

– remote - the template is located on a remote file server. Reference to the template must be
specified in the value parameter.

• id - string. The template identifier. The path to the template document file relative to the templates directory. It
is also used to write a report file in debug mode and to identify a request in the log.

• value - string. The value is used in embedded and remote modes.

• type - string. This parameter is used to specify a non-standard template type. Supported value: xlsm,

Examples for XML format:

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 13

Example for JSON format:

Input data

The element (object) input-data contains:

• Simple string data to substitute into the template instead of tags

• Values for conditional expressions

• Table descriptors

• List descriptors

• Data to be substituted into image tags

• Block descriptors

"value": "UEsDBBQACAgIAPyFilcAAAAAAAAAAAAAAAA...LAAAAX3JlbHMvLnJlbHOtkt1KA0EMh"

® Note

The difference between the data structure for JSON and XML is that instead of XML elements, data is represented as
objects and lists of objects. Tag names are specified by the field names of the objects. Lists, tables, images are child
objects in relation to the input-data object.

http://directlink/templates/letter.docx
http://directlink/templates/letter.docx

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 14

Simple string data to be substituted into the template instead of tags

For XML format

The element tags contains a list of child tag elements with the name attribute and the desired specific value to which
the tag in the template will be replaced when generating the report. The name attribute matches the tag in the template

Example:

For JSON format

Tag names are given by the names of the objects within the input-data.

Example:

Description of tables

For XML format

The element of tables descriptor contains a list of child table elements with the name attribute. The name attribute
matches the tag in the template. The tag in the template will be replaced by the table created according to the table
description in the request.

Example:

(continued on next page)

® Note

For multi-reports a list (array) input-data-array containing elements (objects) with the same structure as input-
data is used. For more details on multi-reports, please refer to the subsection ‘Working with a multi-report
document’.

<input-data><tags>
<tag name="ORGANIZATION">«xxxxyyyy» LLC</tag>

<rows>

<row>

</row>
</rows>

<header>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 15

For JSON format

Table descriptors are child objects in relation to the input-data object. Field names of table objects are the same as
tags in the template.

Example:

(continued on next page)

(continued from previous page)

<cell> </cell>,

</header>
<rows>

<row>

</row>

</rows>

"TABLE-NO-FORMAT":

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 16

List Descriptors

For XML format

The list descriptor element contains a list of child list elements with the name attribute. The name attribute matches the tag
in the template. The tag in the template will be replaced by a paragraph formatted as a list with element data from the list
descriptor in the request.

Example:

(continued on next page)

(continued from previous page)

"TABLE-FORMATTED":

<items>

</items>

<items>

<item>numbered item 1</item>
<item>numbered item 2</item>
<item>numbered item 3</item>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 17

For JSON format

The list descriptors are arrays within the input-data object. The field names of the list objects match the tags in the
template.

Example:

Data to be substituted into image tags

For XML format

The images element contains a list of child image elements with the name attribute. The name attribute matches the tag in
the template. The images in the template will be replaced by the image data from the request.

Example:

For JSON format

The data to be substituted into the image tags is inside the images object, which is a child of the input-data object.

Example:

(continued on next page)

(continued from previous page)

</items>

<images>

<image name="IMAGE-1-JPEG">/9j/4AAQSkZJ … CigAooAKKACigD//Z</image>

</images>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 18

The data descriptor can also contain data for code generation (e.g. QR code). Read more in Working with graphical
codes.

Block Descriptors

For XML format

The blocks descriptor element contains a list of block child elements with the block-template attribute (matches the name
of the block template in the template document). A block has the same elements as input-data except for image and block
elements. The block templates in the template document will be used to insert the needed number of block instances with
different data sets into the document. The insertion locations are determined by the tags of the template instance in the
template document. Details can be found in the subsection “Working with the document → Blocks”.

For JSON format

The list (array) of blocks descriptors is inside the input-data object.

Example:

(continued on next page)

(continued from previous page)

…

"/9j/4AAQSkZJ … AooAKKACigAooA//9k="

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 19

(continued from the previous page)

Request options

 The request options element (object) contains:

• output-mode - string. It determines the form in which the result is presented.

Supported Values:

– base64 - the result will be represented as a base64 encoded string. This value is used by
default.

– binary - the result will be represented as a binary stream.

– url - the result will be presented as a link to the report file that can be downloaded from the
report server.

Note: The enable-binary-output flag is considered outdated but remains in use to support older reports.

• report-format - string. It indicates the format of the report file if it is different from the format mentioned in the
request url. The only non-empty supported value: pdf. Default value: empty string. See "Convert report to PDF"
below.

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 20

• formatting - formatting options object. Supported only for word requests.

– Object field: tables - object of table formatting options.

– Object field: enable-cells-auto-merge - Boolean value. It specifies whether to merge consecutive
cells with the same value in the same column vertically. Default value - true.

• domain-name - string. It specifies the domain name to form the path for saving the report file when using a file
server (providing a report by link).

• file-name - string. It specifies the file name to form the path for saving the report file when using a file server
(providing a report by link).

• enable-debug-report-save - Boolean value. It specifies whether to create a copy of the document report and a
copy of the request (file name - template ID) in the local reports_debug directory of the service. The default
value - false.

Example for XML format:

Example for JSON format:

Response format

The response-format element (object) can accept json and xml values. One can read more about how

the response format is set in the subsection " Response Structure".

Example for XML format:

<options>

<output-mode>binary</output-mode>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 21

Example for JSON format:

Examples of requests

Examples for XML format

Example 1

Example 2

<?xml version="1.0" encoding="UTF-8"?>
<request>

<template uri="local" id="template_example_1"/>
<input-data>

<tags>
<tag name="ORGANIZATION"> «xxxxyyyy» LLC</tag>
<tag name="TAG_IN_HEADER_TEST">Top footer example</tag>
<tag name="TAG_IN_FOOTER_TEST">Footer footer example</tag>
<tag name="CONDITIONAL_TAG_TRUE">true</tag>
<tag name="CONDITIONAL_TAG_FALSE">false</tag>

</tags>
<tables>

<table name="TABLE-FORMATTED">
<rows>

<row>
<cell tag="number of items">1</cell>
<cell tag="contract_number">Example number 1</cell>
<cell tag="district">Example district 1</cell>
<cell tag="enterprise">Example enterprise 1</cell>
<cell tag="cutoff_date ">Example date 1</cell>
<cell tag="address">Example address 1</cell>
<cell tag="complex_field" Example >Sum1</cell>

</row>
</rows>

</table>
<table name="TABLE-NO-FORMAT">

<header>
<cell>Number of item </cell>

(continued on next page)

<request>

<tags>…</tags>
<tables>…</tables>

<images>…</images>
<blocks>…</blocks>

<options>…</options>

</request>>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 22

Example for JSON format:

(continued on next page)

(continued from previous page)

<cell> </cell>,

</header>
<rows>

<row>

</row>

</rows>

<images>

<image name="IMAGE-1-JPEG">/9j/4AAQSkZJR … oAKKACigAooAKKACigD//Z</image>
<image name="IMAGE-2-JPEG">/9j/4AAQSkZJR … CigAooAKKACigAooA//9k=</image>

</images>

<options>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 23

CONDITIONAL_TAG_TRUE": "true",
"CONDITIONAL_TAG_FALSE": "false",
"TABLE-NO-FORMAT":
{

(continued from previous page)

"header":
[

“No. of items”,
“Case No. in Arbitration Court”,
“Debt period”,
“Principal debt, USD, including VAT”,
“Interest, USD”,
‘State duty, USD,
“Court judgment penalty”,
“Total repayment amount, USD”,
“Maturity date, not later”

],
"rows":
[

[
"1",
"А12-1234/2030",
"October 2024,
"12 345,58",
null,
"23 456,00",
"78 912,41",
null,
"31.08.2022"

]
]

},
"TABLE-FORMATTED":
{

"rows":
[

{
"number_of item": "1",
"contract_number": "Example number 1",
"district": "Example of district 1",
"enterprise": "Example of enterprise 1",
"cutoff_date": "Example of date 1",
"address": "Example of address 1",
"complex_field": "Example of amount 1"

}
]

},
"images":
{

"IMAGE-1-JPEG":
{

"data": "/9j/4AAQSkZJR … oAKKACigAooAKKACigD//Z"
},

(continued on next page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 24

The examples of requests in XML and JSON formats can be also found in the Examples archive.

Example of a service call

For XML format

For JSON format

Response structure

The response format (JSON or XML) can be specified in two ways:

1. in the HTTP header Accept. Supported values: application/json and application/xml .

2. in the request body response-format element (object). Supported values: json and xml.

Priority is given to the format specified in the request body.

The service response contains an object in JSON or XML format that includes:

1. Error description (error code, error message). In case of successful service response, the value
null is returned.

2. Result (base64 encoded file of the report document in docx/pdf format or a link to the report
document file).

Response format

...

(continued from previous page)

}

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 25

Response example

Example for the report provided by the link

Part of the request:

Response:

Working with the document

General information

The following is available for documents in DOCX format:

• tags that will be replaced by the input data from the request,

• tables,

• lists,

• images,

• conditional expressions,

 (continued from previous page)

"result": "test_domain/2025/02/17/13/521b84da-a837-40d3-a145-51defae86235/name_by_

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 26

• creating a single report from a single template based on multiple input data (multi-reports),

• blocks.

Working with tables

The following table types are supported in the template:

1. Table without formatting. It is defined by tag only. The table is generated to the width of the page with equal
column widths.

2. Table with formatting. It is defined by a table with the following parameters:

• Optional custom header.

• The first cell of the row following the header contains a table tag. This row is deleted during generation.

• The row following the tag line contains column tags, their formatting will be applied to the generated
rows. This row is deleted during generation.

• Optional fixed rows with any tags (replacement data source - main tags).

Cell merge management

The basic merge algorithm is automatic merging of cells with the same content vertically.

One can change the merge algorithm using the formatting.tables.enable-cells-auto-merge request option.

For JSON-formatted requests, advanced vertical and horizontal merge options are supported. An object describing

a table row has an optional formatting object. Example:

The field names of this object are the names of the table columns for which it is necessary to apply the merge option. Field
values: merge option object. This object has the following fields:

• vertical_merge – row that controls the vertical merge of a cell. Supported values: “restart” - prevents merging
by a neighboring cell located in the previous row of the same column; “continue”- force merge with a cell
higher in the column; “unset” - the merge option will be inherited from the cell higher in the column.

• column_span – integer that controls the horizontal merge of the cell. The value specifies the number of cells
to merge to the right of the current cell (inclusive).

® Note

Tables in document footers are supported.

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 27

Lists

Single-level token-type and numbered lists are supported.

Example for XML format:

A detailed example of a request using lists (lists.json) and its template (lists.docx) can be found in the
Examples archive.

Adding items is possible in any place of the list in the template. In case of an empty list in the input data, the list is
deleted from the report.

Conditional expressions

Parts of the template text can be excluded from the report depending on the truth of the condition in the conditional

tag. Format of the conditional tag:

The opening tag starts with a # character followed by a condition. The closing tag starts with a / followed by the
condition of the opening tag.

In the request, the data to be substituted into conditional expression tags is located inside the input-data element

(object). Example for XM format:

® Note

This is a direct control of merge settings in a document. To quickly understand what values to set for certain cells,
one should first configure the desired behavior in the text editor, save the docx document, unzip it as a zip archive
and see what values are applied in the .xml file.

<items>

</items>

[#condition]conditional template [/condition]text

® Note

Conditional expressions in footers are not supported.

<tags>

<tag name="CONDITIONAL_TAG_TRUE">true</tag>
<tag name="CONDITIONAL_TAG_FALSE">false</tag>

</tags>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 28

Example for JSON format:

A detailed example of a request using conditional expressions (example_from_json.json) and its template
(example_from_json.docx) can be found in the Examples archive.

Blocks

A block is a report fragment containing text/tables/lists (everything except images in the current version). It is created
from a template-block (a certain fragment of a template document) a necessary number of times in a necessary place of
the template with different sets of input data.

The block template in a template document is defined by the tags.

[block-template:custom name of the block template]

The block templates are completely removed from the template document before replacing tags with input data.

Block insertion locations are defined by the block template instance tags.

[block-instances:comma separated list of block template names]

of the template document

The block template content is inserted into the document (with tags replaced in the document) at the location of the
template instance tag.

Each block template instance tag specifies which templates should be taken as the basis for creating a block in the report
(in other words, instantiate the block template). All block inputs are considered in their sequence order. When replacing
tags in the block template, all tag values are taken only from the block data object (relevant in the current version).

In the request, block data are defined by the blocks array, which contains block objects with block-template fields
(coincides with the block template name in the template document) and data object field. The data object has the same
child objects as the input-data object, except for images and blocks.

Example:

(continued on next page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 29

A detailed example of the request using blocks (example_multiblocks.json) and its template
(example_multiblocks.docx) can be found in the Examples archive.

Working with multi-reports

General information

It is possible to create a single report from a single template based on multiple inputs.

(continued from previous page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 30

Examples of requests

Example for XML format

<request>
<template uri="local" id="multi_report_1-N"/>
<input-data-array>

<input-data>
<tags>

<tag name= "subscriber"> subscriber1</tag>
<tag name= "subscriber_address"> subscriber_address1</tag>
<tag name= "period"> period1</tag>
<tag name= "contracts"> contracts1</tag>
<tag name= "total_amount_debt"> total_amount_debt1</tag>
<tag name= "amount_indebtedness1"> amount_indebtedness1_1</tag>
<tag name= "amount_indebtedness2"> amount_indebtedness2_1</tag>
<tag name= "date_penalty"> date_penny1</tag>

</tags>
<tables>

<table name="TABLE-FORMATTED">
<rows>

<row>
<cell tag= "item_number"> 1</cell>
<cell tag= "contract_number"> Example number 1</cell>
<cell tag= "district"> Example of district 1</cell>
<cell tag= "enterprise"> Example of enterprise 1</cell>
<cell tag= "date_off"> Example date 1</cell>
<cell tag= "address"> Example address 1</cell>
<cell tag= "complex_field"> Example amount 1</cell>

</row>
</rows>

</table>
</tables>

</input-data>
<input-data>

<tags>
<tag name= "subscriber"> subscriber2</tag>
<tag name= "subscriber_address"> subscriber_address2</tag>
<tag name= "period"> period2</tag>
<tag name= "contracts"> contracts2</tag>
<tag name= "total_amount_debt"> total_amount_debt2</tag>
<tag name= "amount_indebtedness1"> amount_indebtedness1_2</tag>

(continued on next page)

® Note

The current version does not support numbered lists.

The current version does not support creating a single report from multiple templates.

Tags in footers need to be used wisely, as there is no way to have custom footers for each report.

Image replacement is only supported globally. All sub-reports will have the set of images applied the last
time. This is a limitation of the current version of the service.

 Documentation, Release 5.0.0.0

31 5.1 Service for generating reports from a template document

Example for JSON format

(continued on next page)

(continued from previous page)

<tag name= "amount_indebtedness2"> amount_indebtedness2_2</tag>
</tags>

<rows>
<row>

</row>

</rows>

<options>

 \XXXXXXXXXXXXXX\",

"CTRNUMBER": "1234",
"TABLE-NO-FORMAT":

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 32

"State duty, USD1",
"Court-ordered penalty1”,
"Total repayment amount, USD1",
"Maturity, not later1"

],

(continued from previous page)

"rows":
[

[
"1_1",
"А12-1234/2030_1",
"October 2024_1",
"12,345.58_1",
null,
"23 456,00_1",
"78 912,41_1",
null,
"31.08.2022_1"

]
]

},
"TABLE-FORMATTED":
{

"rows":
[

{
“item number”: “1_1",
"contract_number": "Example of number 1_1",
"district": "Example of district 1_1",
"enterprise": "Example of enterprise 1_1",
"cutoff_date": "Example of date 1_1",
“address": "Example of address 1_1",
"complex_field": "Example of amount 1_1"

}
]

},
"images":
{

"IMAGE-1-JPEG":
{

"data": "/9j/4AAQSkZJRgABAQEAYABgAAD…AKKACigD//Z"
},
"IMAGE-2-JPEG":
{

"data": "/9j/4AAQSkZJRgABAQEAYABg…oAKKACigAooA//9k="
}

}
},
{

"ORGANIZATION": "xxxxyyyyyy_2 LLC",
"CLINAME": “CITY ENTERPRISE ‘PASSENGER AUTOMOBILE TRANSPORT_2’”,
"CTRNUMBER": "1234_2",
"RESTPENY": null,

(continued on next page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 33

"TAG_IN_HEADER_TEST": "Example header_2",
"TAG_IN_FOOTER_TEST": "Example footer_2”,
"CONDITIONAL_TAG_TRUE": "true",
"CONDITIONAL_TAG_FALSE": "false",
"TABLE-NO-FORMAT":
{

 (continued from previous page)

"header":
[

"Item number_2",
"Case No. in Arbitration Court_2",
"Debt period_2”,
“Principal debt, USD incl. VAT_2",
“Interest, USD_2",
"State duty, USD_2",
“Court-ordered penalty_2”,
"Total repayment amount, USD_2",
"Maturity, not later than_2"

],
"rows":
[

[
"1_2",
"А12-1234/2030_2",
"October 2017_2",
"12 345,58_2",
null,
"23 456,00_2",
"78 912,41_2",
null,
"31.08.2019_2"

]
]

},
"TABLE-FORMATTED":
{

"rows":
[

{
"item number": "1_2",
"contract_number": "Example number 1_2”,
"district": "Example of district 1_2”,
“Enterprise”: "Example of enterprise 1_2",
"cutoff_date": "Example of date 1_2",
"address": "Example of address 1_2",
"complex_field": "Example of amount 1_2"

}
]

}
}

],
"options":
{

 (continued on next page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 34

A detailed example of a request to generate a multi report (multi_report_1-N_json.json) and its template
(multi_report_1-N_json.docx) can be found in the Examples archive.

Examples of service call

For XML format

For JSON format

5.1.4 Report generation in XLSX format
Service Description

Name of service Service for generating multi-reports from a template document in XLSX format
Path to service

 • [host]:[port]/excel_report_json
 • [host]:[port]/excel_report_xml
 • [host]:[port]/excel_report_json/v2

Method POST
Parameters The request body must contain a JSON or XML object.

Read more about the structure of the request body in the subsection “Request Body
Structure”. In response the service gives a document file in XLSX format encoded
in BASE64. When converting a report to PDF format, the service returns a PDF
document file encoded in BASE64.

 Assignment The service is designed to generate multi-reports from a template document in XLSX

format. Conversion to PDF is possible.

Request body structure

The body of the request contains an object in JSON or XML format that includes:

1. Template descriptor.

2. Input data to be substituted into the template instead of tags.

3. Request options.

(continued from previous page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 35

4. Response format.

Template descriptor

The element (object) of the template descriptor contains:

• uri – string that specifies the location of the template document file depending on how the id parameter is
interpreted.

Supported Values:

– local - template location in the templates directory

– embedded - the template is included in the request as a base64 encoded string. The value of the
string must be written to the value parameter.

– remote - the template is located on a remote file server. Reference to the template must be
specified in the value parameter.

– inner - inner template, used to generate a table with a header.

• id - string. The template identifier. The path to the template document file relative to the templates directory. It
is also used to write a report file in debug mode and to identify a request in the log.

• value - string. The value is used in embedded and remote modes.

• type - string. This parameter is used to specify a non-standard template type. The supported value: xlsm.

Example for XML format:

Example for JSON format:

Input data

The element (object) input-data contains:

• Data to substitute into the template instead of tags: strings, numbers, formulas, links.

• Table descriptors.

• Block descriptors.

• Data to be substituted into image tags.

® Note

The difference between the data structure for JSON and XML is that instead of XML elements, data is represented as
objects and lists of objects. Tag names are specified by object field names. Tables and images are child objects in
relation to the input-data object.

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 36

Data to be substituted in the template instead of tags

Strings

For XML format

The tags element contains a list of child tag elements with the name attribute and the desired specific value to which the
tag in the template will be replaced when generating the report. The name attribute is the same as the tag in the template.

Example:

For JSON format

Tag names are given by the names of the objects within the input-data.

Example:

Numbers

For XML format:

The element tag also supports the type attribute. If the type attribute is num, the tag value will be interpreted as a
floating point number. In this case a numeric value will be substituted into the template, this allows, for example, to
apply formulas.

Example:

For JSON format:

To interpret the tag value as a number, one must specify the value without quotation marks, with a period as the
separator of the integer and fractional parts.

Example:

Formulas

Instead of a tag, a formula can be inserted into the template to calculate and display values.

The formula in the request is specified by an object with fields:

• type - string, supported value: "formula".

<tags>

<tag name="ORGANIZATION">«xxxxyyyyyy» LLC</tag>
</tags>

<tag name="doc_cnt" type="num">2</tag>}

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 37

• value - string, values are taken from the table editor used, without equal sign.

For the XML format, type is the attribute of the tag element and value is its value:

For JSON format:

No row number conversions are performed. It is assumed that the row numbers are relevant for the final report, i.e. after
inserting the table rows that come before the row containing the formula. The row numbers can be calculated based on
the table row numbers in the template document and the number of table rows at the time of generating the row with the
formula in the query.

Example request: formula.json It can also be found in the Examples archive.

References

Instead of a tag, a hyperlink can be inserted into the template.

The reference in the request is specified by an object with fields:

• type - string, supported value: "link".

• text - string, the name of the link displayed in the document.

• value - string, the value of the link to jump to.

For the XML format, type and text are attributes of the tag element, and value is its value:

For JSON format:

Example request: hyperlinks.json. It can be also found in the Example archive.

<tag name="sum" type="formula">SUM(AX2:AX3)</tag>

</tag>

® Note

in the document template, tags for links should be in hyperlink format. To do this, start the tag name with http://
(or https://, ftp://)

%2522
http://xsquare.ru/
http://xsquare.ru/
http://link1/

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 38

Table descriptors

For XLSX reports, it is also possible to generate tables based on data from the request.

Difference from the DOCX format

• tags are set in the cell-tags element (object) once for the whole table,

• cell tag maps the column tag to the cell index in the array specifying the table row.

For XML format

The tables descriptor element contains a list of child table elements with the name attribute. The name attribute matches
the tag in the template. The tag in the template will be replaced by the table created according to the table description in the
request.

Example:

For JSON format

Table descriptors are child objects in relation to the input-data object.

Example:

(continued on next page)

<table name= "table_insured_individuals">

<rows>

<row>

<cell>ABC-001-002-003-00</cell>
</row>

</rows>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 39

Cell values in a table can also be formulas and links:

Example JSON:

(continued on next page)

(continued from previous page)

"ABC-001-002-003-00".

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 40

XML :Example

An example request: example_with_links.xml. It can be also found in the Example archive.

(continued from previous page)

<table name= "table_insured_individuals">

<rows>

<row>

<cell>001-02-0034

</row>
<row>

<cell> 001-02-0034

</row>

</rows>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 41

Block descriptors

For XLSX reports, it is possible to generate data blocks in a document based on a template block and data from the
request.

A block template is a sequence of rows in the document between cells with the following tags
[block_name] - [/block_name].

A block-template can be repeated many times consecutively in the document. One can also optionally add a page break
after each block, which is useful when printing documents.

The blocks descriptor element contains a list of child block elements with the template attribute (matches the name of
the block template in the template document).

The block has the same elements as input-data, except for image and block elements. The data for the block is located
in the data descriptor, and for each block you can also specify a page break at the end of the block.

The page break is set by specifying true in the page-break descriptor.

The block templates in a template document will be used to insert any number of instances of blocks with different data
sets. The blocks are inserted sequentially one after another.

Example XML:

For requests in JSON format, the name of the block template is specified in the block-template descriptor.

Example JSON:

(continued on next page)

<blocks>

<data>
<tags>

<tag name="date">01/02/2024</tag>
</tags>

</data>
</block>

<no-page-break>true</no-page-break>
<data>

<tags>
<tag name="date">01/02/2025</tag>

</tags>
</data>

</block>

<data>
<tags>

<tag name="date">01/02/2026</tag>
</tags>

</data>
</block>

</blocks>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 42

"data":
{

(continued from previous page)

"main2": "main_for_1",
"main3": "m1_val",
"main4": "m1_val2",
"table":
{

"cell-tags":
{

"f2": 0,
"f3": 1,
"dt_pay": 2

},
"rows":
[

[
"f2_val1",
"f3_val1",
"22/12/2023"

],
[

"f2_val2",
"f3_val2",
"23/12/2023"

]
]

}
}

},
{

"block-template": "block_1",
"data":
{

"main2": "main_for_2",
"main3": "m2_val",
"main4": "m2_val2",
"table":
{

"cell-tags":
{

"f2": 0,
"f3": 1,
"dt_pay": 2

},
"rows":
[

[
"f2_val3",
"f3_val3",
"11/22/2022"

]
]

(continued on next page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 43

An example request: blocks.json. It can be also found in the Examples archive.

Data to be substituted into image tags

For XML format

The images element contains a list of child image elements with the name attribute. The name attribute matches the tag in
the template. The images in the template will be replaced with the image data from the query. The new BASE64 encoded
image file content is passed in the request.

Example:

For JSON format

The data to be substituted into the image tags are inside the child objects of the input-data object.

Example:

The data descriptor can also contain data for code generation (e.g. QR code). Read more in Working with graphical
codes.

(continued from previous page)

® Note

Rows with empty cells are not allowed in the block-template. To make cells not empty, it is enough to fill cells
of the block with any color and then cancel the filling and save the template file.

<images>

</images>

…

…

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 44

Deleting images

To remove an image from the template, one must pass null instead of the new content. Example:

Request options

The request options element (object) contains:

• output-mode – string that defines the form of output delivery.
Supported values:

– base64 - the result will be represented as a base64 encoded string. This value is used by default.

– binary - the result will be represented as a binary stream.

– url - the result will be presented as a link to the report file that can be downloaded from the report
server.

Note: The enable-binary-output flag is considered outdated but is still in use to support older reports.

• report-format – string that indicates the format of the report file if it is different from the format mentioned in
the request url. The only non-empty supported value: "pdf". Default value: empty string. See "Convert report to
PDF" below.

• clean-data-by-null - Boolean value that defines the way of processing tags with null values for xlsx, xlsm
templates. If the option value is true, the cell corresponding to the tag will be completely cleared of any content.
If the value of the option is false, the string tags will be filled with empty rows, and for other types - cleared. The
default value is false.

• domain-name – string that specifies the domain name to form the path for saving the report file when using a
file server (providing the report by link).

• file-name – string that specifies the file name to form the path for saving the report file when using a file server
(providing the report by link).

• enable-debug-report-save - Boolean value that specifies whether to create a copy of the document report and
request copy (file name - template identifier) in the local reports_debug directory of the service. The default
value is false.

"data": "/9j/4AAQSkZJRgABAQEAYAB…AooAKKACigAooAKKACigAooA//9k="

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 45

Example for XML format:

Example for JSON format:

"options":

Response format

The response-format element (object) can accept json and xml values.

One can read more on how the response format is set in the subsection "Response structure".

Example for XML format:

Example for JSON format:

Examples of requests

Example for XML format

(continued on next page)

® Note

Set print areas (“Set Print Area”) in the document template, according to them the conversion to PDF will be
performed.

<options>

<output-mode>binary</output-mode>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 46

<tag name="tag1">tag1_value</tag>
<tag name="tag2">tag2_value</tag>

</tags>
<tables>

<table name="table_insured_individuals">
<cell-tags>

<cell-tag name="item_number" index="0"/>
<cell-tag name="social_security_number" index="1"/>
<cell-tag name="gender" index="2"/>
<cell-tag name="full_name" index="3"/>
<cell-tag name="date_birth" index="4"/>
<cell-tag name="date_contract" index="5"/>
<cell-tag name="contract_number" index="6"/>

</cell-tags>
<rows>

<row>
<cell>1</cell>
<cell>001-02-0034</cell>
<cell>F</cell>
<cell>Catherine Smith</cell>
<cell>01/01/1970</cell>
<cell>01/01/1988</cell>
<cell>ABC-001-002-003-00</cell>

</row>
</rows>

</table>
</tables>
<images>

(continued from previous page)

<image name="IMAGE-1-JPEG">/9j/4AAQSkZJRgABAQEAYABgAAD/4QFQR0 ...</image>
<image name="IMAGE-2-JPEG">/9j/4AAQSkZJRgABAQEAYABgAAD/4QFQR ...</image>

</images>
</input-data>
<options>

<enable-debug-report-save>true</enable-debug-report-save>
</options>

</request>

Example for JSON format

(continued on next page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 47

Example of a service call

For XML format

For JSON format

(continued from previous page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 48

Response structure

The response format (JSON or XML) can be specified in two ways:

1. In HTTP header Accept. Supported values: application/json and application/xml.

2. In the body of the request in the response-format element (object). Supported values: json and xml.

The format specified in the request body has priority.

The service response contains an object in JSON or XML format that includes:

1. Error description (error code, error message). In case of successful service response, the value null is returned.

2. Result (BASE64 encoded report document file in xlsx format).

Response format

Example response

An example for the report provided by the link:

Response:

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 49

Error codes

The field code can accept the following values:

"1" - an error in the request,

"2" - report generation error.

Working with the document

General information

For documents in XLSX format, the following are available:

• tags that will be replaced by the input data from the query,

• tables,

• images.

Working with tables

There are two options of working with tables.

v1 - API: /excel_report_json

A formatted table is defined as follows:

• the first cell of the row contains a tag with the table name. This row is deleted during generation.

• “tag string”, the row(s) following the table tag string contains the column tags, their formatting will be
applied to the generated rows (if no formatting string is specified, see below). This row(s) is removed
during generation.

• optional: a string indicating that the next row contains a formatting string. It contains a single cell with the
text “[cell format]”. Used for tables where numeric data should be in cells with number (or general) format,
not rows (otherwise it is easier to specify formatting in the tag line).

• optional: “format string”, a string that specifies the format of cells instead of the tag string. Cell values are
ignored. The format is applied to the generated strings. It must be a copy of the tag string in terms of the
number of cells and their order.

The ability to map a single row of input data to multiple rows in a document is supported. This may be needed for tables
where a single logical row has cells with vertical merging. The number of template rows per input data row is defined as
the maximum number of vertically merged rows in any cell from the first row after the tagged row of the table itself (see
the function getNumberOfSheetRowsPerInputDataRow).

An example template can be found in the Example archive.

® Note

The input cell data format is text and numbers (integer or real).

Cell references in formulas are not corrected during report generation. Formulas may become incorrect if
rows are added/deleted to the report.

Conditional expressions are not supported in the current version.

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 50

v2 - API: /excel_report_json/v2

A formatted table is defined as follows:

• the first cell of the row contains a tag with the table name. This row is deleted during generation.

• “tag string”, the row following the tag string contains column tags, their formatting will be applied to the
generated rows (if no formatting row is specified, see below). This row is deleted during generation.

• optional: a string indicating that the next row contains a formatting string. It contains a single cell with the text
“[cell format]”. It is used for tables where numeric data should be in cells with number (or general) format, and
not rows (otherwise it is easier to set the formatting in the tag string).

• optional: “format string”, a string that specifies the format of cells instead of the tag string. Cell values are ignored.
The format is applied to the generated rows. It must be a complete copy of the tag string in terms of the number
of cells and their order.

The example templates can be found in the Example archive.

• cell_format_options.xlsx

• cell_format_options_typed_cells.xlsx

Cell merge management

The basic merging algorithm is to apply horizontal merging of generated cells based on merging of template table cells.

Supports advanced vertical merge options. Defined by an object with a single field:

• vertical_span is an integer. It controls the vertical merging of a cell. The value specifies the number of cells to
merge down from the current cell (inclusive).

Options can be mapped to table columns in the template, specified by index

or to cell tags (this method has priority, which is convenient for selective correction of merge options for some of the
columns):

® Note

currently, applying formatting to generated rows does not include font settings. Background color and cell
border settings (e.g. horizontal merging of cells) are supported.

® Note

currently, applying formatting to generated rows does not include font settings. Background color and cell
border settings (e.g. horizontal merging of cells) are supported.

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 51

Adding rows to the end of a template document

The rows specified by the rows-to-add list will be added to the end of the template. The added rows can contain
different number of cells and different column data, that is, each added cell is independent of the others. See the example
request add_rows_to_end.json in the Examples archive.

When using the rows-to-add mode, the cell values can be:

• null

• lines

• numbers

• formulas

• hyperlinks

Example:

(continued on next page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 52

See the example request add_rows_to_end_complex.json in the Example archive.

If it is necessary to specify style, formatting and cell type of added rows, you can use the last row in the document as a
template. To do this, specify the use-last-row-style flag in the request options. In this mode, the last row will serve as
a source of style, formatting and type for each cell when adding new rows using the rows-add method. The last row-
template will be removed from the resulting document. In the request, the type of data to be substituted must match the
cell type in the last row.

Example:

(continued on next page)

(continued from previous page)

® Note

Dates and times are passed as numbers, not strings.

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 53

},
"options":
{

 (continued from previous page)

"use-last-row-style": true
},
"input-data":
{

"rows-to-add":
[

[
12,
"001-02-0034",
"F",
"Catherine Smith",
34021,
null,
"no link."

],
[

2.56,
"001-02-0034",
"М",
"John Doe ", 34022,
0.6458,
{

"type": "link",
"text": "example link 1",
"value": “http://xsquare.dev"

}
],
[

3.4555555,
"001-02-0034",
null,
"Peter Parker",
34025,
0.3,
{

}

],
[],
[

"type": "link",
"text": "example link 2",
"value":
http://xsquare.dev"

4,
null,
"M",
"Anthony Kohl",
null,
null,

(continued on next page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 54

Generating a table without a template

The report server enables generating a document as a table without a template. To do this, inner is used as the uri value of
the template descriptor. The request must contain a global table descriptor, which contains a header descriptor with
column names and a rows descriptor with an array of rows.

You can use the column_width descriptor to specify the column width, by default the column widths will be set up
automatically based on the content.

See the example request table_custom_column_column_width.json in the Example archive.

(continued from previous page)

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 55

Using XLSM format as a template

The XLSM format - spreadsheet files with macro support - can be used as templates. To use this type of template it is
necessary to specify the “type” parameter in the template descriptor:
“xlsm”.

See the example_macros.json request in the Example archive.

5.1.5 Convert report to PDF
Activation

Specify the report format "pdf" in the request options.

Example:

Dependencies

The Libre Office package must be installed. The soffice program must be available for invocation. It is possible to
specify the path to it in the command line parameters of the report server or via a configuration file.

Principle of operation

The report server saves the report to a file and calls the soffice utility with the following parameters, for example

then sends the resulting PDF file instead of the original report.

By default

The path to the soffice utility is searched in the directories specified by the PATH environment variable. One can
specify a direct path in the reporting server command line arguments or through a configuration file.

File exchange with soffice goes through the temporary folder of the system. One can specify the working directory in
the command line arguments of the report server or via a configuration file.

See the output of the command

<options>

 Documentation, Release 5.0.0.0

5.1 Service for generating reports from a template document 56

Performance

By default, the command execution time

for a blank document - 2.3 seconds (for cpu i7-3615M, ssd). Most of the time is spent on initialization of Libre
Office.

To speed up the conversion, one can use the quick start mode, i.e. pre-execute command.

In this mode, Libre Office is in RAM the whole time, which saves about 2 seconds.

5.1.6 Barcode operation
It is possible to output a line of text as a barcode. To operate correctly in Word and Excel reports, Libre Barcode
family fonts must be installed in the operating system. Available in the librebarcode repository.

Each font represents a specific barcode format. The following formats are supported:

• Code-128.

• Code-39

• EAN13

The font can include the original text directly below the barcode (fonts with Text suffix). Find below the example of

using the Code-128 format.

Code-128

Fonts to install:

• LibreBarcode128Text-Regular.ttf, will be available as "Libre Barcode 128 Text"

• LibreBarcode128-Regular.ttf, will be available as "Libre Barcode 128"

How to use

In the template for a regular tag, select a font. For example, "Libre Barcode 128 Text".

Test requests

Document in DOCX format

Document in XLSX format

® Note

for Libre Office 6.3.4.2 in Ubuntu 19.10 soffice -quickstart causes the main window to show. The parameters -
minimized and -headless do not solve this problem, as they do not allow to use acceleration after a single
conversion. In Windows 10, LO is only visible in the tray when started this way.

https://github.com/graphicore/librebarcode/releases

 Documentation, Release 5.0.0.0

5.2 PDF report generator 57

5.1.7 Working with graphic codes (QR code)
To substitute dynamically created graphic codes in place of the image, it is necessary to pass the code descriptor to the
parameter data.
Example:

Parameters for generating graphic codes are similar to parameters in the module of code generation, detailed
description of parameters can be found in the section Code generation service (QR code) .

5.2 PDF report generator

5.2.1 General description of the service
The service generates a report in PDF format by HTTP-request in JSON format.

The PDF document is generated using special generator commands.

 Documentation, Release 5.0.0.0

5.2 PDF report generator 58

5.2.2 Document generation using PDF generator
Service description

Name of service PDF report generator
Path to service [host]:[port]/pdf_report_json
Method POST
Parameters The request body must contain an object in JSON format. One can read

more about the structure of the request body in the subsection “Request
body structure”. In response, the service gives a base64-encoded PDF
document file.

Purpose The service is designed to generate documents in PDF format.

Request body structure

The body of the request contains an object in JSON format that includes:

1. PDF generator descriptor.

2. Input data to be substituted into the template instead of tags.

3. Optional: PDF generator.

4. Request options.

Example:

PDF generator descriptor

The PDF report-generator descriptor object contains:

• uri – string that specifies the position of the generator command source depending on how the id parameter is
interpreted. Supported values: local and embedded.

• id - string. The ID of the generator.

There are two possible ways to use the PDF generator:

• generator as part of the request (all generator commands are placed inside the embedded-report-generator
object of the request body)

• generator as a part of the service (all generator commands are placed inside JSON file in special
pdf_report_gen folder on the server).

«

 Documentation, Release 5.0.0.0

5.2 PDF report generator 59

Accordingly:

• When is uri set to embedded, id is only used for diagnostic messages and request identification. The generator
must be in the root embedded-report-generator object of the request. See "Generators as part of the request"
below.

• When uri is set to local, id is the name of the file in the pdf_report_gen service directory. See
 "Generators as part of the service" below.

Generator as part of the request

Optionally, the generator can be integrated into the request.

In this case, all generator commands are specified in the embedded-report-generator object.

Example:

Generator as part of the service

Goal: not to pass command data within requests unless it changes from one request to another.

In this case, all generator commands are specified in a JSON format file, which must be located in the
pdf_report_gen directory located in the service application directory.

Generator format inside the file in the pdf_report_gen directory:

"commands":

 Documentation, Release 5.0.0.0

5.2 PDF report generator 60

The example generator in the body of the request:

where id is the name of the file in the pdf_report_gen service directory.

An example of a simple request for the generator inside the example.json file in the pdf_report_gen directory:

Input data

The input-data object contains the input data that is substituted into the tags.

Example:

Optional: PDF generator

The PDF embedded-report-generator object contains generator commands. It is used optionally when uri is set to
local.

It is described in detail in the subsection "Generators as part of the request".

® Note

PDF generator commands that work with text may contain tags that will be replaced with input data from the
request. One can read more about using tags in the "Tags" section below.

«

 Documentation, Release 5.0.0.0

5.2 PDF report generator 61

Request options

The options request object has fields:

• output-mode – string that specifies the form of output delivery. Supported values:
– base64 - the result will be represented as a base64 encoded string. This value is used by default.

– binary - the result will be represented as a binary stream.

– url - the result will be presented as a link to the report file that can be downloaded from the report
server.

Note: The enable-binary-output flag is considered outdated but is still in use to support older reports.

• domain-name – string that specifies the domain name to form the path for saving the report file when using a
file server (providing the report by link).

• file-name – string that specifies the file name to form the path for saving the report file when using a file server
(providing the report by link).

• enable-debug-pdf-log - Boolean value that enables extended diagnostic log of PDF creation. Default value is
false.

• enable-debug-report-save - Boolean value that specifies whether to create a copy of the document report and
request copy (file name - template identifier) in the local reports_debug directory of the service. The is default
value false.

Example:

5.2.3 Example of a service call

Response structure

The service response contains an object in JSON format that includes:

1. Error description (error code, error message). In case of a successful service response, the value null is returned.

2. Result (base64 encoded generated PDF file of the document).

Response format

(continued on next page)

 Documentation, Release 5.0.0.0

5.2 PDF report generator 62

Response example

Using page templates

One can use ready-made PDF page templates to generate a document using the PDF generator.

There is a special command setPageTemplate to set the template of a particular page. One can read more about the
command in the subsection “Generator commands”.

To position text and other elements on a template page, one must set coordinates. Read more about specifying
coordinates of document elements in the subsection "Coordinates".

Page templates in PDF format are stored locally in the templates/pdf directory located in the service application
directory.

Service directories

PDF generation scripts are stored in the pdf_report_gen directory located in the service application directory.

Page templates in PDF format are stored locally in the templates/pdf directory located in the service application
directory.

Example requests can be found in the directory query_examples/pdf.

Fonts to be used in the generator are located in the assets/fonts directory located in the service application directory.
They are loaded at service startup.

(continued from previous page)

® Note

® Note

When adding new font files, one must restart the service.

 Documentation, Release 5.0.0.0

5.2 PDF report generator 63

Examples of requests and templates

Example requests can be found in the examples/pdf/embedded-report-generator and examples/pdf/report-
generator directories in the Examples archive.

Example templates can be found in the examples/pdf directory of the Examples archive.

5.2.4 Generator commands
The PDF document is generated using special generator commands.

The commands are located inside the embedded-report-generator object if the generator is embedded in the request
(see "Generator as part of the request" above).

Commands can be also located in a JSON format file, which is located in the pdf_report_gen directory in the service
application directory (see "Generator as part of the service" above).

Commands are described inside the commands array.

Example:

The commands array can include the commands described below.

NewPage

Creates a new page in the document.

Parameters

• orientation - string. Supported values:

– "L" - landscape orientation
– "P" - portrait orientation

The default value is “P”.

Example:

(continued on next page)

"commands":

 Documentation, Release 5.0.0.0

5.2 PDF report generator 64

setCoordinateMode

Specifies the interpretation of coordinates and dimensions specified in subsequent commands. The default mode is "in
millimeters”.

Parameters

• mode - Supported values: "millimeters", "percent", “normalized".

setPageMargins

Sets the indentation from the page borders.

Parameters

left, right, top, bottom - floating point numbers. Indentation from the left, right, top, bottom edges of the page. When
the bottom margin is reached in commands of Row_Print type, a new page is automatically created

Example:

setCurrentX

Sets the X coordinate of the cursor.

Parameters

• value - floating point number. X coordinate

setCurrentY

Sets the Y coordinate of the cursor.

Parameters

• value - floating point number. Y coordinate

setCurrentXY

Sets the coordinates of the cursor.

Parameters

• x is a floating point number. X.coordinate

(continued from previous page)

 Documentation, Release 5.0.0.0

5.2 PDF report generator 65

• y is a floating point number. Y coordinate

saveX

Saves the X coordinate for later use in the command coordinate parameters via the tag
[PDF:savedX].

Parameters

• value - optional parameter, by default equal to the current X coordinate. It can be a floating point number or a
string-expression with references to embedded tags. Example expression:
"[PDF:currentX] - 50"

saveY

Saves the Y coordinate for later use in the command coordinate parameters via the tag [PDF:savedY]. Warning: the
value may become irrelevant when creating a new page later.

Parameters

• value - optional parameter, by default equal to the current Y coordinate. It can be a floating point number or a
string-expression with references to embedded tags. Example expression:
"[PDF:currentY] - 50"

saveCoordinate

Saves a necessary coordinate value for later use in the coordinate parameters of commands via the [SAVED:key] tag.
Supplements saveX/saveY commands in cases where multiple values need to be accessed.

Parameters

• key - string. The arbitrary key for use in the [SAVED:key] tag

• value - can be a floating point number or a string-expression with references to embedded tags. Example
expression: "[PDF:currentY] - 50"

Example:

setRotate

Sets the rotation of all subsequent objects.

Parameters

• angle is a floating point number. Angle of rotation in degrees.

• x is a floating point number. X coordinate of the rotation point. If null, then X is the cursor coordinate

• y is a floating point number. Y coordinate of the rotation .point. If null, then Y is the cursor coordinate

Example:

 Documentation, Release 5.0.0.0

5.2 PDF report generator 66

Command cancellation:

startOpacity

Specifies the degree of transparency for all subsequent objects. The action is canceled by the endOpacity command.

Parameters

• val - floating point number. Valid range is from 0.0 to 1.0, where zero is full transparency.

endOpacity

Cancels the effect of the startOpacity command.

No parameters.

SetPrintFont

Sets the font type and size for subsequent text commands.

Parameters

• font_id Supported values: names of font files from assets/fonts directory without extension. Fonts are loaded
at service startup.

• size - the size of the font in points in the user space of the pdf document.

setColor4Text

Sets the text color for subsequent text commands.

Input options:

• r, g, b integer decimal components of RGB color in the range from 0 to 255. Example of red color: "r":255,
"g":0, "b":0.

• color string in the format "#rrggbb", where rgb are hexadecimal components of RGB color in the range from 0
to ff. Example of red color: "color": "#ff0000".

® Note

The only supported charset is cp1251.

 Documentation, Release 5.0.0.0

5.2 PDF report generator 67

setColor4Drawing

Sets the border color for objects output after this command is executed. Examples of objects: table cells, circles, lines,
rectangles, etc.

Parameters: similar to the setColor4Text command.

setColor4Filling

Sets the fill color of the internal areas for objects output after this command is executed. Examples of objects: table
cells, circles, rectangles, etc.

Parameters: similar to the setColor4Text command.

setLineWidth

Sets the thickness of lines to be output after execution of this command. Examples of objects: table cells borders, lines,
rectangles, etc.

Parameters

• width - floating point number. Line thickness.

setCellMargin

Sets the table cell content indentation from the left, top, right, and bottom borders.

Parameters

• margin is a floating point number.

setCellBottomMargin

Sets the table cell content indentation from the bottom border.

Parameters

• margin is a floating point number.

setCellLeftMargin

Sets the table cell content indentation from the left border.

Parameters

• margin is a floating point number.

setCellTopMargin

Sets the table cell content indentation from the top border. Parameters

• margin is a floating point number.

setCellRightMargin

Sets the table cell content indentation from the right border. Parameters

• margin is a floating point number.

 Documentation, Release 5.0.0.0

5.2 PDF report generator 68

PrintCell

Outputs a rectangular cell with text inside. One can specify the color and if there are borders.

Parameters

• w - floating point number. The width of the cell rectangle.

• h is a floating point number. Height of the cell rectangle.

• txt - text

• border - string. It sets the visible cell borders. Valid values: 0 - no border, 1 - outer rectangle border, L - left, T
- top, R - right, B - bottom border. A combination of L, T, R and B values is allowed.

• align - string. Horizontal alignment of text. Values: L – left edge, R - right edge, C – center edge, J – justified
alignment across the cell width

• vert_align - string. Vertical alignment of the text. Values: T – top edge. B - bottom edge, C - center. Default
value: C.

• fill - Boolean value that indicates whether to fill the cell with the current color. See
 setColor4Filling. The default value is false.

• link - string. A link, such as a URL or an internal link. Not supported in the current version.

• clipping - Boolean value that specifies whether to clip the text on the cell borders. Default value
- false.

• ln - integer. Cursor position after drawing the cell. Valid values: 0 - next to the cell, 1
- new line, 2 - under the cell. The default value is 0.

Example:

PrintMultiLineCell

Outputs a multi-line cell

Parameters

• w is a floating point number. Width of the rectangle.

• h is a floating point number. Height of the cell rectangle.

• txt - text

 Documentation, Release 5.0.0.0

5.2 PDF report generator 69

• border - string. Sets the visible cell borders. Valid values: 0 - no border, 1 - outer rectangle border, L - left, T -
top, R - right, B - bottom border. A combination of L, T, R and B values is allowed.

• align - string. Horizontal alignment of text. The values L - by the left edge. R – by the right edge, C - center, J –
justified alignment across the cell width.

• vert_align - string. Vertical alignment of the text. Values: T - top edge. B - bottom edge, C - center. Default
value is C.

• fill - Boolean value that indicates whether to fill the cell with the current color. See.
setColor4Filling. The default value is false.

• maxline - array of floating point numbers. The array element specifies the maximum number of text lines in a
multiline cell.

• link - string. A link, such as a URL or an internal link. Not supported in the current version.

• clipping - Boolean value that specifies whether to clip the text on the cell borders. Default value
- false.

• indent - floating point number. Indentation for the first line of text. The default value is 0.

• ln - integer. Cursor position after drawing the cell. Valid values: 0 - next to the cell, 1 - new line, 2 - under the
cell. The is default value 0.

Example:

Row_Print

Prints a line in a PDF document. A line consists of multi-line cells (see PrintMultiLineCell). The height of the line is
determined by the cell with the maximum height.

Parameters

• data - array of strings. The array element specifies the cell text in the string.

• input_data_tag - alternative to data, the name of the array of string-value cells in the request input data.

• width is an array of floating point numbers. The array element specifies the cell width.

• border - array of strings. The array element describes the visible borders of the cell. See the description of the
command PrintMultiLineCell. All borders are visible by default.

 Documentation, Release 5.0.0.0

5.2 PDF report generator 70

• maxline is an array of floating point numbers. The array element specifies the maximum number of text lines in
a multiline cell. There is no limit by default.

• align - array of rows. The array element specifies the horizontal alignment in the cell.

• vert_align - array of strings. The array element specifies the vertical alignment in the cell.

• font - an array of font descriptor objects. The array element specifies font parameters in a cell. The set of fields
of each descriptor is similar to the parameters of the SetPrintFont command. The default value is null, which
means that the font settings set in the previous SetPrintFont call are used.

• h - floating point number. The height of the cell. The default value is 5 units.

• fill - Boolean value that indicates whether to fill the cell with the current color. See setColor4Filling. The
default value is false.

• min_height is a floating point number. The minimum height of the row. Zero means that the parameter is not
used. The default value is 0.

• clipping - Boolean value that specifies whether to clip the text on the cell borders. The default value
- false.

Example:

PrintText

Outputs the text at the specified coordinates.

Parameters

• x is a floating point number. X coordinate of the beginning of the text

 Documentation, Release 5.0.0.0

5.2 PDF report generator 71

• y is a floating point number. Y coordinate of the beginning of the text

• text - text

Example:

underline

Underlines the text output by the command PrintText.

The parameters are the same as for PrintText, the parameter values must match.

LineBreak

Line break. It moves the cursor to the beginning of the next line.

Parameters

• h - floating point number. Indentation from the current Y coordinate of the cursor.

Line

Draws a straight line between two points on the page. Parameters

• x1 is a floating point number. X coordinate of the line start.

• y1 is a floating point number. Y coordinate of the line start.

• x2 is a floating point number. X coordinate of the end of the line.

• y2 is a floating point number. Y coordinate of the end of the line.

• color string in the format "#rrggbb", where rgb are hexadecimal components of RGB color in the range from 0
to ff. An example of red color: "color": "#ff0000". By default, the color previously set by setColor4Drawing
command is used.

• width - floating point number. Line thickness. By default, the value previously set by setLineWidth command
is used.

Example:

 Documentation, Release 5.0.0.0

5.2 PDF report generator 72

Circle

Draws a circle on the page.

Parameters

• x is a floating point number. X coordinate of the center of the circle.

• y is a floating point number. Y coordinate of the center of the circle.

• r is a floating point number. The radius of the circle.

• draw - Boolean value that controls drawing of the circle outline. The default value is true.

• fill - Boolean value that controls the fill color of the inner area of the circle. The default value is false.

• draw_color the color of the circle outline. The string in the format "#rrggbb", where rgb is hexadecimal
components of RGB color in the range from 0 to ff. An example of a red color is “color”: "#ff0000". By default,
the color previously set by setColor4Drawing command is used.

• fill_color the color of the circle outline. The string in the format "#rrggbb", where rgb is the hexadecimal
components of RGB color in the range from 0 to ff. An example of a red color is “color”: "#ff0000". By default,
the color previously set by set with the setColor4Filling command is used.

• linewidth is a floating point number. The thickness of the circle outline. By default, the value previously set by
setLineWidth command is used.

Example:

 Documentation, Release 5.0.0.0

5.2 PDF report generator 73

putImage

Parameters

• name - string. The name of the image or image ID. If the name matches the one specified in the previous call,
the image specified in that same call is used.

• data - string. Base64 encoded image file. If name is the same as the one specified in the previous call, this
parameter is not specified.

• x is a floating point number. X coordinate of the image.

• y is a floating point number. Y coordinate of the image.

• w - floating point number. Image width in units specified by the command setCoordinateMode. If the parameter
is not specified, the image is displayed in actual width, which is calculated based on the pixel density of the PDF
document (72 dots per inch) and the image width according to the image file. Example: a 72x72 dots image will
be 1 inch by 1 inch in a PDF document.

• h - floating point number. Image height. Units: similar to the parameter w.

• link - string. URL or ID of internal link. Not supported in the current version.

Example:

setPageTemplate

Parameters

• template - object in the format

where template id is the path to the pdf document relative to the templates/pdf directory without extension.

• page - integer. Template page number for output. Range from one to the number of pages in the template.

Example command for a multi-page template:

(continued on next page)

 Documentation, Release 5.0.0.0

5.2 PDF report generator 74

checkPageBreak

If adding the specified height to the current Y coordinate results in a page overflow (i.e., going beyond the bottom indent
of the page), the command adds a new page and returns true (the return value has a value only in the if command).

Parameters

• h - floating point number. The height to check for page overflow.

• newpage - Boolean value that specifies whether to create a new page in the document when overflow occurs.
The default value is true.

if

The command allows to execute a set of subcommands if the condition is true immediately at the moment of
command execution (unlike register_auto_new_page_commands).

Supported set of commands to use as a condition: checkPageBreak.

Parameters

• condition - object describing the command that returns a logical value.

• commands - an array of commands to be executed in case the command specified in the condition parameter
returned true.

Example:

(continued on next page)

(continued from previous page)

® Note

Duplicate font resources in the report when using the setPageTemplate command when the font is the same as the
one loaded by the setPrintFont command. May increase the size of the report file.

 Documentation, Release 5.0.0.0

5.2 PDF report generator 75

Typical use case: before attempting to display an element or set of elements at the bottom of the page, when there is a
risk of going beyond the bottom margin of the page. The value of the h parameter to check is usually taken from the size
of the element to be rendered.

register_auto_new_page_commands

Allows registering a set of subcommands to be executed when execution of commands of Row_Print type leads to
automatic creation of a new document page. It can be useful for rendering a table header. It is effective from the moment
it is called. It can be canceled by calling the same command with an empty list of subcommands.

Parameters

• commands - an array of commands to execute.

Example:

(continued on next page)

(continued from previous page)

® Note

The if command works directly in the place where it is called, with the current Y coordinate. That is, if it is called
at the moment when there is a vertical space of height h on the page, the list of subcommands will not be executed.

® Note

It is not recommended to use the if command to output table rows. It can be useful for outputting a unique element
when rendering is closer to the bottom of the page. In case of tables, is better to

 Documentation, Release 5.0.0.0

5.2 PDF report generator 76

Cancellation of the command:

5.2.5 Coordinates
Commands that accept coordinates and dimensions as parameters interpret the values based on the call of the
command setCoordinateMode. Millimeters are used by default.

All such parameters can be specified numerically or textually.

In text form, expressions and special tags PDF:currentX/PDF:currentY are supported.

Example:

(continued from previous page)

 Documentation, Release 5.0.0.0

5.2 PDF report generator 77

5.2.6 Tags
Commands that work with text (PrintText, PrintCell, etc.) can contain tags that will be replaced with input data
from the request.

The input data is contained in the body of the request with the "input-data" object: {...} (see "Input data" in the
subsection "Request structure").

Tag format

The tag is specified in square brackets. For example, [ORGANIZATION].

Example:

No brackets are specified in the request (see the example from "Input data" in the subsection "Request structure").

Embedded tags

Some tags are embedded in the PDF generator.

1. PDF:currPageNum, current page number.

2. PDF:currentX/PDF:currentY, X and Y coordinates of the cursor.

3. PDF:savedX/PDF:savedY, available after calling saveX/saveY commands.

4. [SAVED:key], available after the saveCoordinate command.

Example:

(continued on next page)

 one party

5.2 PDF report generator 78

 Documentation, Release 5.0.0.0

(continued from previous page)

{
"name": "PrintText",
"params":{

"x":"[SAVED:pageNumX]",
"y":"[SAVED:pageNumY]",
"text":"Page number: [PDF:currPageNum]"

}
}

5.2.7 Barcode operation
It is possible to output information as a barcode by using the Libre Barcode family of fonts. The fonts are available in
the librebarcode repository. Each font represents a specific barcode format. The following formats are supported:

• Code-128.

• Code-39

• EAN13

The font can include the original text directly below the barcode (fonts with Text suffix). Find below the example of

the Code-128 format.

Code-128.

Fonts to be placed in the assets/fonts folder of the service:

• LibreBarcode128Text-Regular.ttf

• LibreBarcode128-Regular.ttf

How to use

In the command generator, select the desired font, for example:

Test request

The PDF report-generator descriptor object contains:

• uri – string that specifies the position of the generator command source depending on how the id parameter is
interpreted. Supported values: local and embedded.

• id - string. The generator ID.

https://github.com/graphicore/librebarcode/releases

5.3 PDF merge service 79

 Documentation, Release 5.0.0.0

There are two possible ways to use the PDF generator:

• generator as part of the request (all generator commands are placed inside the embedded-report-generator
object of the request body),

• generator as a part of the service (all generator commands are placed inside JSON file in special pdf_report_gen
folder on the server).

Therefore:

• When is uri set to embedded, id is only used for diagnostic messages and request identification. The generator
must be in the root embedded-report-generator object of the request. See "Generators as part of the request"
below.

• When uri is is the set to local, id is the name of the file in the pdf_report_gen service directory. See
"Generators as part of the service" below.

5.3 PDF merge service

5.3.1 General description of the service
The service combines documents in PDF format into one document by HTTP request in JSON format.

5.3.2 Merging PDF documents
Service Description

Name of service PDF merge service
Path to service [host]:[port]/pdf_merge_json
Method POST
Parameters The request body must contain an object in JSON format. You can read more

about the structure of the request body in the “Request Body Structure”
subsection. In response, the service gives a base64-encoded PDF document
file.

Purpose The service is designed to merge several PDF documents into

 One document.

Request body structure
The body of the request contains an object in JSON format that includes:

1. Request ID.
2. Input data: list of document descriptors to merge.
3. Request options.

Example:

(continued on next page)

® Note

XML format is not supported in the current version.

 Documentation, Release 5.0.0.0

5.3 PDF merge service 80

(continued from previous page)

Request ID

The request-id is used to write the merged file in debug mode and to identify the request in the log.

Input data

The input-data object contains:

A list (array) of document-descriptors to merge.

Example:

Input document descriptor

The input document descriptor object supports fields:

• id - string. The document identifier that is used for references to the input parameter in error messages and
diagnostic log.

• content-type – string that indicates how the content parameter is interpreted. Supported value: base64.

• content - string. If the content type is base64 – this means base64 encoded PDF document. Note: There is no
limitation on the number of pages in the document.

Example:

Request options

The options request object has fields:

• output-mode – string that specifies the form of output delivery.
Supported values:

5.4 Print form generation service 81

 Documentation, Release 5.0.0.0

– base64 - the result will be represented as a base64 encoded string. This value is used by default.

– binary - the result will be represented as a binary stream.

– url - the result will be presented as a link to the report file that can be downloaded from the report
server.

Note: The enable-binary-output flag is considered outdated but is still in use to support older reports.

• domain-name – string that specifies the domain name to form the path for saving the report file when using a
file server (providing the report by link).

• file-name – string that specifies the file name to form the path for saving the report file when using a file server
(providing the report by link).

• enable-debug-merged-doc-save - Boolean value that specifies whether to create a copy of the document report
and a copy of the request (file name - template ID) in the local reports_debug directory of the service. The
default value is false.

• enable-debug-pdf-log - Boolean value that enables extended diagnostic log of PDF creation. Default value is
false.

Example:

Example of the request body

The example requests can be found in the examples/pdf/pdf/pdf_merge directory in the Examples archive.

5.3 PDF merge service 82

 Documentation, Release 5.0.0.0

Example of a service call

Response structure

The service response contains an object in JSON format that includes:

1. Error description (error code, error message). In case of a successful service response, the value null is returned.

2. Result (base64 encoded PDF file of the merged document).

Response format

Example of the response

5.4 Print form generation service

5.4.1 General description of the service
The service generates a printed form of a document in PDF format by HTTP-request in JSON format:

• A table of signers is generated on the last page of the document.

• Intermediate pages display a footer with brief information about the document.

® Note

The merged document may be larger than the sum of the merged documents. This is due to duplication of identical
resources (e.g., fonts) used in incoming documents.

® Note

XML format is not supported in the current version.

 Documentation, Release 5.0.0.0

5.4 Print form generation service 83

5.4.2 Generating a printed form of the document in PDF format
Service Description

Name of service Print form generation service
Path to service [host]:[port]/print_form_pdf_json
Method POST
Parameters The request body must contain an object in JSON format. One can read more

about the structure of the request body in the subsection “Request body
structure”. In response, the service gives a base64-encoded PDF file of the
printed form of the document.

Purpose The service is designed to generate a printed form of a document in PDF

format, including columns with brief information about the document and a
table of signers on the last page.

Request body structure

The body of the request contains an object in JSON format that includes:

1. Request ID.

2. Inputs:

• Descriptor of the input document to create the printed form (the original PDF document to create the
printed form).

• Descriptor of the table of signers and footer of intermediate pages (data to be substituted in the table of
signers and footer of intermediate pages with data on the document to be signed).

• Options for the appearance of generated tables (color/size of fonts).

3. Request options.

Example:

Request ID

The request-id is used to write the file in debug mode and to identify the request in the log.

Input data

The input-data object contains:

• Descriptor of the input document to create the printed form.

• Descriptor of the signers table and footer of the intermediate pages.

 Documentation, Release 5.0.0.0

5.4 Print form generation service 84

• Options for the appearance of generated tables.
Example:

Input document descriptor

The input-document descriptor object for creating a printable input-document form has fields:

• id - string. The document identifier. It is used for references to the input parameter in error messages and
diagnostic log.

• content-type – string that indicates how the content parameter is interpreted. Supported value: base64.

• content - string. If the content type is base64 – this means base64 encoded PDF document. Note: There is no
limitation on the number of pages in the document.

Example:

Descriptor of the signers table and footer of intermediate pages

The descriptor object of the signers table and the footer of intermediate pages signatures-info has fields:

• signature-summary-text - string. A general description of the signer table to output before the signer data.

• table-header-texts- array of strings. A list of signer table headers. Note: in the current version there can only be
4 columns (limitation of the signatures array element described below).

• table-header-column-width-list is an array of floating point numbers that controls the width of the table
columns. The sum of all normalized widths must equal one. The size of the array must match the size of the
table-header-texts field.

• signatures - array of objects with the data on signers. See "Signer data descriptor" below for details.

• intermediate-page-footer-info - data to be displayed in the footer on all pages of the document except for the
last page, where the table of signatories is located. See " Descriptor of the intermediate pages footer with data on
the document to be signed " below for details.

• logo-asset-name - string. The optional parameter. Name of the image file (with extension) to be displayed in the
upper right corner of the table of signers. The path is set relative to the directory assets/images/print_forms in
the working directory of the service.

Example:

 Documentation, Release 5.0.0.0

5.4 Print form generation service 85

Signer data descriptor

The array element of the signers’ data signatures data descriptor has fields:

• description - string. A general description of who the signature belongs to. The text is displayed in the first
column of the signatures table.

• certificate-owner - object with string fields organization and employee, describing organization, full name
and position of the certificate-owner. The text is displayed in the second column.

• certificate - object with string fields serial-number and validity describing the serial number and validity
period of the certificate used for signing. The text is displayed in the third column.

• signing-timestamp - string. Description of the exact time of signing. The text is displayed in the fourth

column.

Example:

Descriptor of the intermediate pages footer with data on the document to be signed

The descriptor object intermediate-page-footer-info has fields:

• lines - array of lines. Arbitrary data describing the document to be signed. It is output as a table with invisible
borders. The last line will be a description of the current page number, if enabled by the print-page-number
field.

• logo-asset-name - string. The optional parameter. Name of the image file (with extension) to be displayed in the
right part of the document data. The path is set relative to the directory assets/images/print_forms in the working
directory of the service.

• print-page-number - Boolean value that specifies whether to print the current page number of the document
under the document data.

Example:

"serial-number": "11255807011ABCBBE4DBF93ECCCB96C45",

 Documentation, Release 5.0.0.0

5.4 Print form generation service 86

Generated table appearance options

The draw-options object of the generated table appearance options has fields:

• font-color - a string in the format "#rrggbb", where rgb - hexadecimal components of RGB color in the range
from 0 to ff. The example of red color: "font-color": "#ff0000".

• font-size - integer. The font size of the signer data in the signer table. The unit is equal to 1/72 of an inch.

• large-font-size is an integer. The size of the font signature-summary-text output in the signer table. The unit
is equal to 1/72 of an inch.

• table-border-color - a string in the format "#rrggbb", where rgb - hexadecimal components of RGB color in
the range from 0 to ff. An example of red color: "font-color": "#ff0000". The color of the signer table borders.

Example:

Request options

The options request object has fields:

• output-mode – string that specifies the form of output delivery. Supported values:
– base64 - the result will be represented as a base64 encoded string. This value is used by default.

– binary - the result will be represented as a binary stream.

– url - the result will be presented as a link to the report file that can be downloaded from the report
server.

Note: The enable-binary-output flag is considered outdated but is still in use to support older reports.

• domain-name – string that specifies the domain name to form the path for saving the report file when using a
file server (providing the report by link).

• file-name - string that specifies the file name to form the path for saving the report file when using a file
server (providing the report by link).

"Transmitted via XXX on 01/02/2003 15:20 GMT+01:00",

 Documentation, Release 5.0.0.0

5.4 Print form generation service 87

• enable-debug-doc-save - Boolean value that specifies whether to create a copy of the document report and a
copy of the request (file name - template identifier) in the local reports_debug directory of the service. The
default value is false.

• enable-binary-output - Boolean value that indicates that the service will output the result as binary data, without
base64 encoding. The default value is false.

• enable-debug-pdf-log - Boolean value that enables extended diagnostic log of PDF creation. The default value
is false.

Example:

Example of the request body

(continued on next page)

"serial-number": "11255807011ABCBBE4DBF93ECCCB96C45",

 Documentation, Release 5.0.0.0

5.4 Print form generation service 88

The example requests can be found in the examples/pdf/print_form directory in the Examples archive.

Service call example

Response structure

The service response contains an object in JSON format that includes:

1. Error description (error code, error message). In case of a successful service response, the value null is returned.

2. Result (base64 encoded PDF file of the printed form of the document).

(continued from previous page)

validity

"Transmitted via XXX on 01/02/2003 15:20 GMT+03:00",
"8f109134-403b-4de5-aa09-6d10462ec071"

 Documentation, Release 5.0.0.0

5.5 Service for converting XLSX documents to JSON, XML, CSV 89

Response format

Response example

Service directories

Images to be used as the logo that are located in the assets/images/print_forms directory in the service application
directory.

5.5 Service for converting XLSX documents to JSON, XML, CSV

5.5.1 General description of the service
The service converts XLSX document to JSON, XML, CSV formats by HTTP-request in JSON format or by HTTP-
request in multipart/form-data format.

In response, the service gives the content of the input document presented in one of the target formats.

Service Description

Name of service Service for converting XLSX documents to JSON, XML, CSV
Path to service For multipart/form-data requests [host]:[port]/xlsx_convert
 For json requests [host]:[port]/xlsx_convert_json

Method POST
Parameters The request body must contain an object in JSON format or objects in

multipart/form-data format. One can read more about the structure of the
request body in the subsection “Request body structure”. In response, the
service returns the document content in the target format.

Purpose The service is designed to convert XLSX document to JSON, XML, CSV

formats

Request body structure

In general, JSON or multipart/form-data queries include:

• Document descriptor.

• Request options.

 Documentation, Release 5.0.0.0

5.5 Service for converting XLSX documents to JSON, XML, CSV 90

Example for JSON request:

Document descriptor

The document descriptor for the JSON format has fields:

• name - string. The name is a document identifier. It is used for references to the input parameter in error
messages and diagnostic log.

• data - string. BASE64 encoded XLSX-document.

The document descriptor for the multipart/form-data format consists of the parameter xlsx="@[path to XLSX-
document]

For example:

Request options

The request can contain the following options:

• output-mode – string that specifies the form of output delivery. Supported values:
– base64 - the result will be represented as a base64 encoded string. This value is used by default.

– binary - the result will be represented as a binary stream.

– url - the result will be presented as a link to the report file that can be downloaded from the report
server.

Note: The enable-binary-output flag is considered outdated but is still in use to support older reports.

• output-format - string. The target format of conversion. Supported values: "JSON", "XML", "CSV". The default
value is JSON

• domain-name – string that specifies the domain name to form the path for saving the report file when using a
file server (providing the report by link).

• file-name - string. Specifies the file name to form the path for saving the report file when using a file server
(providing the report by link).

• process-sheets-numbers - array of integers that defines sequential numbers of pages to be converted from the
input document (For example: [1,2,3] - for processing the first three pages). The numbering starts with "1".
Default value - all pages for JSON and XML, first page for CSV.

• process-from-start-of-sheet - Boolean value that specifies to start processing the document from the very first
cell (A1) regardless of whether it contains data or not. Otherwise, processing will be performed from the first
cell containing the data. The default value is false.

 Documentation, Release 5.0.0.0

5.5 Service for converting XLSX documents to JSON, XML, CSV 91

• no-extend-line - Boolean value. This option is responsible for extending each line of the source document to the
maximum line length in the document to get a two-dimensional data array (this is the default behavior of the
converter). If true, the option specifies not to append strings, and the output will be an array of data arrays. The
default value is false.

• process-start-cell - string. This option allows you to specify the starting cell for processing (in cell naming
format, e.g. “E5”), i.e. it specifies the left upper boundary of processing by row-column, which allows to convert
only the data range of interest. The default value is the first cell with data (will be defined automatically).

• process-end-cell - string. This option allows you to specify the final cell to be processed (in cell naming format,
e.g. “G8”), i.e. it specifies the right lower boundary of processing by row-column, which allows you to convert
only the data range of interest. The default value is the last cell with data (will be defined automatically).

• ignore-empty-rows - Boolean value that specifies to skip strings without data when exporting. This option is
available only for exporting to JSON, XML, as these formats contain row numbering. The default value is false.

• encoding - string. This option allows you to specify the target encoding of the processing result. Supported values:
WIN1250, WIN1251, WIN1252, WIN1253, WIN1254, WIN1255, WIN1256, WIN1257, WIN874, WIN866,
KOI8RISO_8859_5. The default value is UTF8.

• enable-debug-report-save - Boolean value that specifies whether to create a copy of the request in the local
reports_debug directory of the service. The default value is false.

For requests in JSON format, the options are passed in the options object.

Example:

For multipart/form-data requests, each option is passed as a separate parameter, all parameters are specified as
strings.

Example:

The example requests can be found in the examples/xslx directory in the Examples archive.

Service call example

For requests in JSON format:

 Documentation, Release 5.0.0.0

5.5 Service for converting XLSX documents to JSON, XML, CSV 92

For multipart/form-data requests:

Response structure

The service response contains a text stream of data in the target encoding.

Conversion example

As an example, this is the conversion range D2:G4 of the
convert_example.xlsx from the Example archive:

second page of the document

The request is in multipart/form-data format:

Conversion result:

'→convert_json > convert_example_from_json.json

5.5 Service for converting XLSX documents to JSON, XML, CSV 93

 Documentation, Release 5.0.0.0

5.6 Service for converting XLS documents to JSON, XML, CSV

5.6.1 General description of the service
The service converts XLS (Microsoft Office Excel Binary 2003) document into JSON, XML, CSV formats by
HTTP-request in JSON format or by HTTP-request in multipart/form-data format.

In response, the service gives the content of the input document presented in one of the target formats.

Service Description

Name of service Service for converting XLS documents to JSON, XML, CSV
Path to service For multipart/form-data requests [host]:[port]/xls_convert

 For json requests [host]:[port]/xls_convert_json

Method POST
Parameters The request body must contain an object in JSON format or objects in

multipart/form-data format. One can read more about the structure of the
request body in the subsection “Request body structure”. In response, the
service gives the content of the document in the target format.

Purpose The service is designed to convert XLS document to JSON, XML, CSV
formats

The service operation, functionality and options are the same as for the XLSX conversion service, except that instead
of the xlsx parameter in multipart/form-data request, the xls parameter is used.

Example:

5.7 Code generation service (QR code)

5.7.1 General description of the service
The service generates graphic codes in JPG, PNG formats by HTTP-request in JSON format. In this version, the
service allows one to generate QR code with flexible setting of parameters of the resulting image.

Service Description

Name of service Code generation service
Path to service [host]:[port]/code
Method POST
Parameters The body of the request must contain an object in JSON format.

More details about the structure of the request body can be found in the
subsection "Request body structure".
In response, the service returns the contents of the graphic file in the JPG or
PNG format.

Purpose The service is designed to generate graphic codes in JPG and PNG formats.

Example:

 Documentation, Release 5.0.0.0

5.7 Code (generation service QR code) 94

Request body structure

The body of the request contains an object in JSON format that includes:

1. Request ID.

2. Input data: code parameters.

3. Request options.

The minimum request to create a QR code must contain the type of request (type) and the data to be encoded (content).
Example:

All other parameters in this case will have default values, which allows generating the "classic" QR code in JPG format:

Request ID

The request id is used to record the result in debug mode, as well as to identify the request in the logs.

 Documentation, Release 5.0.0.0

5.7 Code (generation service QR code) 95

Input data

The input-data object contains a descriptor of the graphic code to be created:

• type - string. A mandatory parameter. The type of the generated code. Supported values: "qr-code".

• content - string. A mandatory parameter. Encoded data.

• qr-color - string. A color of code points in hexadecimal record format. The default color is black.

• bg-color - string. A code background color in hexadecimal record format. The default color is white.

• bg-transparent – flag that defines background transparency for codes in PNG format. By default - false.

• dot-size - number. Code dot size in pixels.

• format - string. The resulting format. The possible options are JPG (default), PNG.

• logo - string. Base64 encoded logo image for inserting into the center of QR code. JPG, PNG formats are
supported. The size of the encoded logo should not exceed 1/5 of the code size.

Example:

"logo": "iVBORw0KGgoAAAANSUhEUgAAAMg ... e3o7DbGAH/
'→LAAAAABJRU5ErkJggg=="

 Documentation, Release 5.0.0.0

5.7 Code (generation service QR code) 96

• style - string. QR code style.

Style options:

– dot

– rounded_rectangle

 Documentation, Release 5.0.0.0

5.7 Code (generation service QR code) 97

– rectangle_with_border

If no style is specified, the default style is used.

 Documentation, Release 5.0.0.0

5.7 Code (generation service QR code) 98

Thus, the parameters allow to flexibly customize the appearance of the resulting code, and using a specific content
format, one can create codes to transmit various kinds of information.

VCARD QR code example:

Request options

The element (object) of request options contains:

• output-mode – string that defines the form of the result presentation.

Supported Values:

– base64 - the result will be represented as a base64 encoded string. This value is used by
default.

– binary - the result will be represented as a binary stream.

– url - the result will be presented as a link to the report file that can be downloaded from the
report server.

'→nORG:Company XSQUARE\nTEL;TYPE=WORK,VOICE:+7 (499) 703-38-99\nTEL;TYPE=CELL,

CHAPTER 6

100

Examples

6.1 Examples archive
In this section, one can find example requests and templates for the service.

The archive of examples should be unpacked to the templates directory in the root of the service. The unpacked
archive contains the following directories:

• pdf - contains PDF - page templates used in the PDF report generator

• examples - represents the following directory tree:

The docx, xlsx directories contain a set of requests (in json/xml formats), documents - templates (.docx and .xlsx) and
scripts (.sh) for receiving reports.
The code directory contain a set of requests (in json format) and scripts (.sh) for receiving QR-code image (.png or
.jpg).

The pdf directory contains the following directories:

• embedded-report-generator -requests (.json) and scripts (.sh) to generate .pdf reports via the PDF report
generator.

• pdf_merge -requests (.json) and scripts (.sh) to merge PDF documents.

• print_form - requests (.json) and scripts (.sh) to generate the print form

 Documentation, Release 5.0.0.0

6.2 Generating a report from the archive of
examples

101

• report-generator - requests (.json) and scripts (.sh) for generating reports via PDF report generator with an

example of generator as part of the service. The pdf_report_gen directory with example generators should be
placed in the root directory of the service.

6.2 Generating a report from the archive of examples
Examine below generating a report from a docx directory based on a lists.json request

{
"template": {

"uri": "local",
"id": "examples/docx/lists"

},
"input-data": {

"CONDITIONAL_TAG_TRUE": "true",
"CONDITIONAL_TAG_FALSE": "false",
"BULLET_LIST": [

"bullet item 1",
"bullet item 2",
"bullet item 3"

],
"NUMBERED_LIST": [

"numbered item 1",
"numbered item 2",
"numbered item 3"

],
"EMPTY_BULLET_LIST": [
],
"EMPTY_NUMBERED_LIST": [
]

},
"options": {

"enable-debug-report-save": false,
"output-mode": "binary",
"formatting": {

"tables": {
"enable-cells-auto-merge": true

}
}

}
}

As a result of running the lists.sh script,

The report file lists_report.docx was written in the directory templates/examples/docx

® Note

scripts may need to be assigned execution rights. This can be done by the following command:
chmod +x *.sh

102

CHAPTER 7

My first report

7.1 General description
This subsection will cover the process of creating a simple report using the report server. Before starting, one needs to
make sure that the installation of the report server was successful.

7.2 First template
To generate a report, one needs to create a document template in DOCX or XLSX format using MS Word/Excel,
LibreOffice Writer/Calc, Google Docs, etc.

The document templates can contain tags that will be replaced with input data from the request. The tag is specified in
square brackets. Example: [debt]. Read more about creating templates in DOCX and XLSX format in the section
‘Service for generating reports from a template document’.

For the first report, we create a simple template in DOCX format that contains a few tags: first_report_template.docx.
Examples of more complex templates can be found in the examples archive.

The created template is placed on the server in the templates directory located in the application directory of the service.

7.3 First request
Next, we will make an HTTP request.

The request for the first report in JSON format will look like this: first_report.json. The template document created
earlier is specified in the id attribute of the template element. The examples of more complex requests can be

® Note

The page templates in in the PDF format are stored templates/pdf directory located in the directory of
the

7.3 First request 103

 Documentation, Release 5.0.0.0

found in the examples archive.

Note: The XML format can also be used for requests in DOCX or XLSX format. To get a report file, use the

‘service for report generation from a template document’.

To get the first report based on the DOCX template created, we use the URI http://localhost:8886/word_report_json.

7.3.1 Description

continues on the next page

Path to service
Method
Parameters

Print form generation service
[host]:[port]/print_form_pdf_json
POST
The body of the request must contain a JSON object:

A template object has attributes (fields):
pecifies

 document depending on how the id parameter is interpreted. Supported
value: local.
id - string. The template identifier. The path to the template document
file relative to the templates service directory. It is also used to write a
report file in debug mode and to identify the request in the log.

7.3 First request 104

 Documentation, Release 5.0.0.0

Table 1 - continued from previous page
input-data - input data to be substituted into the template.

An input-data object can contain:
• tags of simple string data,
• table descriptor tags,
• list descriptor tags,
• image tags,
• block tags.

options - request options.
One can read more about JSON structure in the section ‘Report
generation service from the template document’. In response,
the service gives the report document file in DOCX format
encoded in BASE64. If it is necessary to get the result without
BASE64 encoding, one should specify the enable-binary-
output flag as true in the request options.

{
"template": {

"uri": "local", "id": "first_report_template"
}, "input-data": {

"ORGANIZATION": “«Example» LLC”, "DATE":
"01.01.2023", "EMP": "John Smith".

}, "options": {
"enable-binary-output": true, "formatting": {

"tables": {
"enable-cells-auto-merge": true

}
}

}
}

Purpose The service is designed to generate a printed form of the document in PDF format,
including columns with brief information about the document and a table of signers on
the last page.

7.3.2 Example request

(continued on next page)

 Documentation, Release 5.0.0.0

7.5 Completion 105

7.3.3 Example of a request to save the result to a file without base64 encoding

7.4 Receiving the first response

7.4.1 The format of the returned response

(continued on next page)

(continued from previous page)

 Documentation, Release 5.0.0.0

7.4 Receiving the first response 106

7.4.2 Example answer

7.5 Completion
As a result, a base64-encoded DOCX file of the first report document or an error message is received.

(continued from previous page)

 Documentation, Release 5.0.0.0

7.5 Completion 107

CHAPTER 8

Appendix

8.1 Quick installation

echo "Install XREPORTS"
apt -y install unzip vim wget curl open-vm-tools zip
mkdir /root/xsquare
cd /root/xsquare
wget https://lcdp.xsquare.ru/files/xreports/rpm_dep/5.0.0.3/deb/xsquare.xreports_5.0.0.3.deb
dpkg -i xsquare.xreports_5.0.0.3.deb

##Install Libre Office. We recommend 7.4.7.2 or 24.8.4
echo "Install Libre Office"

apt -y install libxinerama1 libcairo2 libcups2 default-jre
cd /root/xsquare
wget https://lcdp.xsquare.ru/files/libreoffice/LibreOffice_24.8.4_Linux_x86-64_deb.tar.gz
tar -xvzf LibreOffice_24.8.4_Linux_x86-64_deb.tar.gz
dpkg -i ./LibreOffice_24.8.4.2_Linux_x86-64_deb/DEBS/*.deb

#set "soffice-path" in config
soffice_path=`find / -name "soffice"`
echo $soffice_path
old_soffice_path='"soffice-path": ""';
new_soffice_path='"soffice-path": "'$soffice_path'"';
echo $new_soffice_path
sed -i -e "s#$old_soffice_path#$new_soffice_path#g" /usr/local/xsquare.xreports/config.json
cat /usr/local/xsquare.xreports/config.json
systemctl restart xsquare.xreports.service

