

Documentation
Release 5.1.2.

 Developer Guide XSQUARE- RAD 5.1.2

Feb. 11, 2025

Table of contents

i

1 General information 1
1.1 Who this guide is for .. 1
1.2 Requirements to the developer .. 1

2 Quick start 2
2.1 Introduction to XRAD .. 2

3 Quick installation 4
3.1 Quick installation on DEB-based OS ... 4
3.2 Quick installation on RPM-based OS .. 6
3.3 Introduction to the development environment ... 8

4 Architecture and system requirements 11
4.1 Architecture .. 11
4.2 System requirements .. 12

5 Installation and customization 14
5.1 XRAD installation .. 14
5.2 Configuring NGINX .. 15
5.3 Configuring Apache2 on a DEB-based OS .. 16
5.4 Configuring Apache2 on an RPM-based OS ... 16
5.5 Customizing XRAD ... 17

6 Configuration files 19
6.1 Configuration file config.json .. 19
6.2 Authentication schemes configuration file auth_config.json ... 20

7 Application development 25
7.1 Basic concepts .. 25
7.2 Settings .. 27
7.3 Working with pages ... 38
7.4 Visual components ... 61
7.5 Regions ... 63
7.6 Components .. 67
7.7 Working with lists .. 97
7.8 User management ... 101
7.9 Styles and themes ... 102
7.10 jsAPI reference guide ... 109

1

CHAPTER 1

General information

This guide describes how to use the XRAD development environment to build web applications.

1.1 Who this guide is for
This guide is intended for developers whose goal is to build a data-centric (database-driven) web application using
XSQUARE RAD development tools, hereinafter referred to as XRAD. The manual describes how to use the tools to
build, debug, manage and deploy the application.

1.2 Requirements to the developer
Basic knowledge of relational database concepts, SQL, basic HTML and JavaScript (js) is required for application
development.

1.3 Localization
All our products do support all PostgreSQL locales. Very important at the beginning create your PostgreSQL database
with compatible localization to correct order of sorting rows, for this the LC_COLLATE and LC_CTYPE parameters
are responsible. We recommend setting your locale as primary on the operating system so that PostgreSQL inherits the
OS locale by default.

Attention! During installation, the default English locale is specified, it is highlighted in red font in the text. If you want
to set a different locale, change the highlighted value to the desired locale.

Example:

CHAPTER 2

2

Quick start

This section introduces you to the general concept of XRAD. This section describes the main components and features
of the development environment.

2.1 Introduction to XRAD
XRAD provides the developer with all the tools to build an application in a single, extensible platform based on
PostgreSQL database server.

2.1.1 What is XRAD?
In today's world, developing a web application often requires multiple developers, each responsible for separate
components of the system.

Typically, a web application is divided into the following components:

• user interface (frontend),

• component for interaction with the database (backend),

• a linking component that is responsible for various application logic (middleware).

All these components are interdependent on each other and, without clearly defined responsibility boundaries, can
disrupt the logic of the application. These boundaries and areas of responsibility are defined by the application architect,
a person who requires a high level of competence in understanding the work of each component. One should also not
forget about the administration of such a system and maintaining its performance, which requires a system administrator.

Maintaining such a team noticeably increases the costs and decreases the speed of application development.

The XRAD platform offers a completely different approach to development.

XRAD is a rapid application development platform developed by XSQUARE LLC (XSQUARE Rapid Application
Development).

XRAD is a declarative environment for developing and deploying database-centric web applications. Thanks to built-
in features such as user interface themes, items of navigation controls, form handlers and flexible reports,

2.1 Getting to know XRAD 3

 Documentation, Release 5.1.2

XRAD considerably accelerates the application development process.

2.1.2 How does XRAD work?
XRAD uses a standard 3-tier architecture in which requests are sent from the browser through the application server to
the database. All processing, data manipulation and business logic is done in the database. After the database processes
the code, the results are passed by the web server as a JSON structure, based on which the web application will render
the page.

This architecture guarantees near-zero-latency data access, superior performance and horizontal scalability out-of-the-
box.

4

CHAPTER 3

Quick installation

3.1 Quick installation on DEB-based OS
Below one can find the steps of the quick installation of XRAD+PGHS using Debian OS as an example. All
commands must be run with root privileges

1. Create a directory for the distribution

Go to the directory

2. Download/receive the distribution to the created directory

3. Unzip distribution

4. Go to the directory with the distribution files

5. Configure the time zone and OS localization

(continued on next page)

5

 Documentation, Release 5.1.2

3.1 Quick installation on DEB-based OS

6. Install PostgreSQL

7. Prepare PostgreSQL

switch to the postgres user

create database users xrad_user and app_user

create appdb and xraddb databases

assign maximum privileges to users xrad_user and app_user

log out of the postgres account session

8. Import databases

9. Install nginx

disable the default site

copy the web controller files for PGHS and XRAD from the distribution kit

(continued from previous page)

3.2 Quick installation on RPM-based OS 6

 Documentation, Release 5.1.2

copy nginx configuration files from the distribution kit

10. Restart nginx

check its condition

11. Copy executable and configuration files XRAD, PGHS

12. Start XRAD as the service and check the status

13. Start PGHS as the service and check the status

14. Check the availability of the default web application and XRAD builder in the browser

Note: in case of problems with http access one should check nginx settings and firewall permissions.

3.2 Quick installation on RPM-based OS
Below one can find the steps of the quick installation of XRAD+ PGHS using Fedora as an example. All commands
should be executed with root privileges

1. Create a directory for the distribution

Go to the directory

2. Download the distribution to the created directory

3.2 Quick installation on RPM-based OS 7

 Documentation, Release 5.1.2

3. Unzip distribution

4. Go to the directory with the distribution files

5. Configure the time zone and OS localization

6. Install and start PostgreSQL

7. Prepare PostgreSQL

switch to the postgres user

create database users xrad_user and app_user

create appdb and xraddb databases

assign maximum privileges to users xrad_user and app_user

log out of the postgres account session

8. Import databases

8 3.3 Introduction to the development environment

 Documentation, Release 5.1.2

9. Install nginx

disable the default site

copy the web controller files for PGHS and XRAD from the distribution kit

copy nginx configuration files from the distribution kit

10. Restart nginx

check its condition

11. Copy executable and configuration files XRAD, PGHS

12. Start XRAD as the service and check the status

13. Start PGHS as the service and check the status

14. Check the availability of the default web application and XRAD builder in the browser

Note: in case of problems with http access you should check nginx settings and firewall permissions.

3.3 Introduction to the development environment
The XRAD development environment provides the developer with a flexible and intuitive interface for developing
and managing the application.

Getting started with the environment begins with the user authentication process on the page:

http://hostname:8080

Where hostname is the name of the host with XRAD installed.

9 3.3 Introduction to the development environment

 Documentation, Release 5.1.2

The main page of the development environment opens after successful authentication. The development environment
interface can be divided into 3 areas (from left to right):

10 3.3 Introduction to the development environment

 Documentation, Release 5.1.2

1. Main menu - contains the key elements of the application being developed, as well as information about the
current user and the interface language.

2. List of items - this area displays the data sets for each main menu item, as well as buttons for creating new items,
updating the data set and context search on the data set. This area supports a contextual menu accessible by right
click.

3. Editor - here one can see the tabs where one can create and edit the selected elements.

The main menu contains the following sections:

• Pages - a list of pages in the web application.

• Users - a list of users of the development environment.

• Lists - predefined lists used for the operation of application components and navigation.

• Settings - settings of various parameters of the application.

• Preview – a button to switch to viewing the application in a new window.

In the main menu one can also change the interface language and end the current user's session.

The development environment supports drag&drop, and the editor supports split-window mode to speed up
development.

The following chapters will provide a detailed description of the development environment and its components.

11

CHAPTER 4

Architecture and system requirements

4.1 Architecture
The basic architecture of XRAD consists of 4 components:

• XRAD database is a database with application metadata. It stores information about the components of the
requested page, processes that should occur during page processing.

• The XRAD application server, which is responsible for processing developer actions and preparing the page
structure for rendering.

• The XRAD web controller, which processes the page structure received from the web server and displays it.

• HTTP Proxy Server, which links the web server and the XRAD web controller.

The PGHS application server is required to display the web application under development, so XRAD and PGHS work
in conjunction and share the same 4 component architecture. Whether you are running an XRAD development
environment or an application created using XRAD, the process is the same. Your browser sends a request, which is
converted into a corresponding code call on the database side. After the database processes the code, the results are
passed back to your browser in the form of a JSON structure, based on which the web application will generate a page.
This cycle happens every time you request or submit a page.

12

 Documentation, Release 5.1.2

4.2 System requirements

All components can be deployed either within a single server or distributed across different physical or virtual
servers.

Horizontal scaling can be easily performed for highly loaded systems. An example of a highly loaded architecture is as
follows:

4.2 System requirements

4.2.1 Performance environment
Supported architecture:

- x86-64

13

 Documentation, Release 5.1.2

4.2 System requirements

• ARM

• Loongson

Supported OS:

• DEB-based - any

• RPM-based - any

• Debian 12 - recommended

Database:

• PostgreSQL 13+

• PostgreSQL 15 - recommended

HTTP/Proxy Server:

• Apache 2.4+

• NGINX 19+

4.2.2 System requirements
XRAD - Server:

• CPU - 1 Core

• RAM - 100 MB

• HDD - 100 MB+ Logs

XRAD DB:

• CPU - 1 Core

• RAM - 50 MB

• HDD - 10 Mb PostgreSQL database

Installation of virtualization/containerization system, operating system, database is carried out at the discretion of the
Administrator if needed.

14

CHAPTER 5

Installation and customization

5.1 XRAD installation
Detailed OS configuration and installation of all components except XRAD are covered in the PGHS documentation.
This documentation covers the actual deployment of XRAD.

Note: the examples are given for the case when the user is in the distribution directory and all actions are performed
with root privileges.

To install XRAD, copy the executables from the distribution to the /usr/local/xsquare.xrad directory

For example:

1. Copy all the components

or 2. Copy the XRAD distribution directly

Note: assign execution rights

Creating a service

(continued on next page)

 Documentation, Release 5.1.2

15 5.2 Configuring NGINX

Note: The default service file can be copied from the distribution. For example:

Start XRAD as the service and check the status

Next, configure HTTP proxy server using NGINX and Apache2

Copy the XRAD web controller files from the distribution kit.

5.2 Configuring NGINX
Copy nginx configuration files from the distribution kit

and edit file /etc/nginx/conf.d/xrad.xsquare.conf, making necessary changes
vi /etc/nginx/conf.d/xrad.xsquare.conf

To apply the new settings, restart nginx

check its condition

(continued from previous page)

 Documentation, Release 5.1.2

16 5.3 Configuring Apache2 on a DEB-based OS

5.3 Configuring Apache2 on DEB-based OS
Copy apache2 configuration files from the distribution kit

and edit the VirtualHost configuration file /etc/apache2/sites-available/xrad.xsquare.conf, making the necessary
changes:

Apply the new configuration

and restart apache2

5.4 Configuring Apache2 on RPM-based OS
Copy httpd configuration files from the distribution kit

and edit the VirtualHost configuration file /etc/httpd/conf.d/xrad.xsquare.conf, making the necessary changes:

mailto:info@xsquare.ru

 Documentation, Release 5.1.2

17 5.5 Configuring XRAD

Disable Security-Enhanced Linux for HTTP requests

and restart apache

5.5 Customizing XRAD
To configure XRAD, edit the config.json file:

(continued on next page)

mailto:info@xsquare.ru

 Documentation, Release 5.1.2

18 5.5 Configuring XRAD

(continued from previous page)

19

CHAPTER 6

Configuration files

6.1 Configuration file .json
For XRAD to operate, the json configuration file must be present in the directory with the executable file.

The configuration file contains 3 sections: The "app" descriptor, where you can define the basic server settings:

"port" - string. Defines the number of the network port on which the server will be started (by default - 8889)

Descriptor "XRAD", where the settings for working with the XRAD database are defined:

• "login" - string. Username to connect to the XRAD database.

• "password" - string. User password for connection to XRAD database.

• "host" - string. IP address of the XRAD database server.

• "port" - number. The number of the port on which the XRAD database server is running.

• "dbName" - string. The name of the database to which XRAD needs to connect.

• "minCons" - number. Minimum number of simultaneous connections to the database.

• "maxCons" - number. Maximum number of simultaneous connections to the database.

runtimeOptions descriptor contains local settings:

• "LC_NUMERIC" - string. Local settings of the numeric format used to work with the database.

The "datasources" descriptor defines an array of data sources used by the application server. The data source
description block contains the same set of fields as the XRAD database description and an additional field:

 Documentation, Release 5.1.2

20 6.2 Authentication schemes configuration file auth_config.json

• "name" - string. The name of the data source.

For example, the following block defines two data sources named DEFAULT_APP and DEFAULT_APP_TEST

6.2 Authentication scheme configuration file auth_config.json
XRAD supports authentication and authorization using the following schemes:

• Microsoft LDAP,

• Microsoft Kerberos SSO

• LDAP

• Kerberos SSO

• Open ID Connect

At startup, the XRAD development server loads schemes from the auth_config.json file and uses them when
authenticating developers.

The auth_config.json file contains an array of authentication scheme descriptors in the following format:

(continued on next page)

 Documentation, Release 5.1.2

21 6.2 Authentication schemes configuration file auth_config.json

• "name" - string. The name of the authentication scheme.

• "label" - string. The name of the authentication scheme displayed on the button.

• "type" - string. The type of the authentication scheme.

Supported values:

• ldap

• kerberos_sso

• microsoft_ldap

• microsoft_kerberos_sso

• oidc

• "enabled" - Boolean value. This flag determines whether the authentication scheme is available for use in the
application.

• "order" - number. The order number in the general list of schemes when displayed on the authentication page.

• "options" is a block of circuit parameters that depends on the type of circuit.

The schemes loaded from the configuration file will be used on the XRAD authorization page according to the
enabled flag and the order number.

(continued from previous page)

 Documentation, Release 5.1.2

22 6.2 Authentication schemes configuration file auth_config.json

Below we review the options block for different authentication schemes.

6.2.1 LDAP, MICROSOFT_LDAP
For the ldap and microsoft_ldap scheme type, the "options" block describes the LDAP server connection parameters
that are used to authenticate and retrieve user information.

• "host" - string. IP address of the LDAP server.

• "port" - number. The port used to communicate with the LDAP server.

• "base" - string. It defines the base entry point to the LDAP directory.

• "encryption" - string. Specifies the type of encryption used to communicate with the LDAP server. Supported
values:

– start_tls - establishes a secure TLS connection after initial authentication over an non-encrypted channel.
Typically used on port 389.

– simple_tls - establishes a fully encrypted TLS connection from the beginning. Usually used on port 636.

– plain - does not use encryption and works over an unprotected channel. Usually used on port 389.

• "bind_dn" - string. Distinguished Name (DN) of the user used for authentication on the LDAP server.

• "password" - string. The password associated with the specified bind_dn.

 Documentation, Release 5.1.2

23 6.2 Authentication schemes configuration file auth_config.json

• "request_user_groups" - Boolean value. It defines the need to request the groups to which the user belongs.

For example:

6.2.2 KERBEROS_SSO, MICROSOFT_KERBEROS_SSO
For the kerberos_sso and microsoft_kerberos_sso scheme types, the "options" block describes the LDAP server
connection parameters that are used to authenticate and retrieve user information.

• "keytab" - string. BASE64 encoded content of keytab file generated for end-to-end domain authentication.

• "request_user_groups" - Boolean value. It defines the need to request the groups to which the user belongs.

For example:

6.2.3 OIDC
For the oidc (Open Id Connect) scheme type, the "options" block describes the configuration of user authentication
and authorization using OpenID Connect (OIDC).

• "scope"-string. A list of requested scopes that need to be accessed during authentication.

• "issuer"-string. The URL of the authentication server (Issuer).

• "uid_field" - string. It defines a field containing a unique user identifier (UID).

• "pkce" - Boolean value. The flag indicating the need to use Proof Key for Code Exchange (PKCE) to enhance
security.

• "client_options" - descriptor of the block of parameters of the client using OIDC authentication.

• "id"-string. Client ID.

 Documentation, Release 5.1.2

24 6.2 Authentication schemes configuration file auth_config.json

• "secret" - string. Secret client key (Client Secret).

• "redirect_uri"-string. The URL to which the user will be redirected after successful authentication.

• "request_user_groups" - Boolean value. It defines the need to request the groups to which the user belongs.

25

CHAPTER 7

Application development

7.1 Basic concepts
To effectively work and use XRAD, developers must understand these key concepts:

• How user interface design is managed,

• how pages are processed and rendered,

• what sessions and transactions are and how to work with them.

7.1.1 Application concept
What is an application?

A web application that is developed with XRAD is an HTML interface that exists on top of database objects: tables and
procedures. The application is logically and physically divided into two databases: the database responsible for the
business logic (APP_DB) and the database with the set of metadata of the application interface (XRAD_DB). PGHS
Application Server combines the data from the two databases and provides an end-user web interface that displays
business data and processes as described by the developer. One PGHS instance can access an unlimited number of
APP_DB databases and only one XRAD_DB database.

For the end user, an application is a set of pages that display and allow data entry through various components.

What is a page?

A page is the "building block" of an application. An application may contain only one, but usually many such blocks.
Each page can contain many simple elements, such as buttons and input fields, as well as more complex elements, such
as various reports, graphs, tables. Elements on a page are grouped using a special container - region. Pages can include
the logic of data processing, called processes. Links or branches are used to connect pages with each other.

 Documentation, Release 5.1.2

26 7.1 Basic concepts

7.1.2 Page rendering and input processing
To view the pages of an application under development, one must call the XRAD application page from the link that
hosts the application. When you launch the application, XRAD invokes two key processes:

showPage is a page rendering process that collects all page attributes (including regions, buttons, and elements) into a
single json control file. The runtime environment then passes this control structure to the client's web browser, which
renders the described application elements. The XRAD client runtime is responsible for rendering the components on
the client. When you request a page by clicking on a link, XRAD calls the showPage process.

processPage - page processing. It is responsible for processing the entered data, including the execution of processes,
data checks and transitions to other pages. The process is called after sending the page to the server, by pressing a
button or calling the appropriate method jsAPI. After submission, all data specified in the page elements are written to
the session and substituted into the corresponding processes.

Transactions

When the showPage or processPage processes are called, a transaction in the database with business data is initiated.
This transaction exists for the entire duration of execution of the showPage or processPage processes. If all processes
are successfully executed, the transaction is terminated by the commit call, except for the case when the TX commit
attribute is set at the process level. If an error occurs in the data processing processes - the transaction will be terminated
by a rollback call, which will undo all changes at the moment of the process execution start. In this regard, the developer
should take into account that the data that will be transferred to the database through the execution of one or another
process will be available only at the successful completion of the transaction. The availability of data at the moment of
executing this or that procedure completely depends on the transaction isolation level configured in the database with
business data. By default, the isolation level in PostgreSQL is set to Read committed.

Due to limitations related to subtransactions in PostgreSQL, calling commit in a business process will result in an error.
To ensure the execution of a separate process regardless of the success of the whole page processing, it is suggested to
specify in the process settings to call commit after its execution.

The session values passed during the call of the showPage or processPage processes will also be written to the database
only after the page processing is successfully executed. However, their values are available during the execution of
these processes. To pass the values of input elements to business processes, see Page Processing.

7.1.3 Sessions and their status
What is a session

A session is a period of user interaction with an application. It starts when the user accesses the application and ends
when the user closes the session, logs out or a certain period of inactivity passes (timeout). During a session, the
application stores information about the user and their actions, which allows to maintain the context of interaction and
personalize the information displayed.

Each session is assigned a unique identifier. XRAD uses this identifier to store and retrieve a working set of application
data before and after each page view. Because sessions are completely independent of each other, any number of
sessions can exist in the database at the same time. A user can also run multiple instances of an application
simultaneously in different browsers.

The value of the session ID is stored in a browser cookie. The lifetime of this cookie is determined by the application
settings and is additionally controlled by the PGHS runtime environment.

Sessions are logically and physically different from the database sessions used to serve page requests. A user runs an
application in a single XRAD session from login to logout with a typical duration measured in minutes or hours. Each
page requested during a session can initiate the creation of a new database session or use reopened database sessions to
access database resources.

 Documentation, Release 5.1.2

27 7.2 Settings

These database sessions often last only a fraction of a second.

What is a session state

Session state is a mechanism that allows developers to store and retrieve values for a user even as the user navigates
through different pages of the application.

Hypertext Transfer Protocol (HTTP) - the protocol most commonly used to deliver HTML pages, is a stateful protocol.
The web browser connects to the server only for the time it takes to load a complete page. Each page request is handled
by the server as an independent event, unrelated to any page requests that have occurred previously or may occur in
the future. In order to access form values entered on one page on the next page, the values must be saved to the session
state. XRAD provides developers with the ability to retrieve and set session state values from any page in the
application.

7.1.4 Managing session values
When creating interactive, data-driven web applications, the ability to access and manage session state values is critical.
In XRAD, session state is automatically managed for each page and is easily referenced in static HTML or logical
controls such as processes or checks.

7.2 Settings
The "Settings" section of the development environment contains:

1. Main - the main settings of the application being developed.

2. Data sources - list of databases that can be used as data sources for the application.

3. Global variables - list of global variables.

4. Global Processes - list of global processes of the application.

5. Authorization schemes - list of schemes available for user authorization during development.

6. Authentication schemes - list of schemes available for user authentication during development.

7.2.1 The main settings
The main application-level settings are mandatory and are divided into the following:

• Basic,

• Lists,

• Session,

• Static resources.

 Documentation, Release 5.1.2

28 7.2 Settings

Parameter Description
App name Application name. Displayed in the page title.

Short name The name of the application displayed in the development environment.

App URL URL of the application.
Home page The main page that an authorized user lands on. In the input field

 one needs to enter, or select from the list, the page number to be used as the homepage.
Login page The main public page that an unauthorized user lands on.

 Typically, the authorization page. In the input field one needs to enter, or select from the
 List, the page number to be used as the login page.

Lists

This parameter block defines the application-level lists.

Parameter Description

Navigation bar Defines a list for the menu in the page header.
Select from the pre-created lists in the appropriate section.

Navigation menu Defines a list for the main menu in the left block of the page
 Select from the pre-created lists in the appropriate section.

Session

This block defines the parameters of user sessions.

Parameter Description

Session lifetime Defines the lifetime of a user session, i.e. the period of time,
 during which a user session of interaction with the application is active.
Session lifetime Defines the unit of measure for the number specified in the "Session lifetime" parameter.
(units of measure) There are 4 options to choose from: seconds, minutes, hours and days.
Inactive session lifetime Specifies the period, in units of time, after which the user session will be deleted

if the user does not perform any actions in the application.
Inactive session lifetime
(units of measure)

Defines the unit of measure for the number specified in the "Session lifetime" parameter.
There are 4 options to choose from: seconds, minutes, hours and days.

Static resources

This block defines external static resources that allow changing the display of the application user interface.

Parameter Description

CSS files A list of .css files containing style sheets. Each line defines a relative or absolute path to an
internal or external resource.

JS files A list of .js files containing JavaScript code. Each line defines a relative or absolute path to
an internal or external resource.

 Documentation, Release 5.1.2

29 7.2 Settings

7.2.2 Data sources
Data sources are one of the most important components of XRAD, which provides an opportunity to scale the
developed application horizontally. The application allows creating an unlimited number of data sources. The data
source is a database, the data of which is used to display the application components. By specifying different data
sources, the developer can combine data output from different databases on one page.

To add a new data source, specify it in the application settings. In the settings, only the name of the source is specified,
which will be used to insert it into the corresponding fields of the page editor components.

The data source connection settings are specified in the json PGHS and XRAD configuration files, with the source name
in the configuration file matching the one entered in the application settings.

7.2.3 Global variables
This settings block defines the global variables of the application.

Global variables are variables that are available and ubiquitous in an application to store some value.

A new global variable can be declared by clicking on the "Global " list or on any element of this list.

When you create a global variable, you must fill in its attributes:

Parameter Description

Name Is the only mandatory attribute that defines the name of the variable to be created.
Temporary The flag that determines whether the variable will be temporary. A temporary variable is not

stored in the session state and accessed only while processes are running.
Comment Text comment

 Documentation, Release 5.1.2

30 7.2 Settings

After clicking the "Save" button, the variable will be entered into the XRAD database and will be available for
viewing, editing and deleting. Existing variables are edited in the same way.

To delete a global variable, one should right click the necessary variable in the list and select "Delete" from the menu.

Preset variables

Preset variables are variables that are present in every XRAD application. These variables cannot be edited or deleted.

Reserved global variables:

Temporary:

• REQUEST - the request code to execute the required process,

• PAGE - page number,

• RESPONSE - the output parameter of the executed Ajax process,

• G01 - G10 - built-in variables for passing values to processes. Can be used when calling processes with js.

• CGI_FORWARDED_FOR is a variable that stores the value of the X-Forwarded-For header sent by the web
server.

• CGI_FORWARDED_IP is a variable that stores the value of the X-Forwarded-IP header passed by the web
server.

• CGI_REAL_IP - A variable that stores the value of the X-Real-IP header passed by the web server.

Constants:

• APP_USER - id of the currently authorized user,

• SESSION - unique session code,

• APP_USER_GROUPS - domain groups of the currently authorized user,

 Documentation, Release 5.1.2

31 7.2 Settings

7.2.4 Global processes
This settings block defines the global processes for the entire application.

An application process is an XRAD process that is not bound to a page. Such processes, as well as processes on pages,
are executed upon request from the application (Request).

The order in which application processes are executed

When a request from an application is made, the system selects all processes (global and page) that meet the
conditions of the request, sorts them according to their sequence numbers, and executes them.

Process management

To create or delete a process, one should call the context menu by right clicking the process list and selecting the
appropriate action.

After filling in or editing the process parameters, confirm the changes by clicking the "Save" button.

 Documentation, Release 5.1.2

32 7.2 Settings

The process parameters are divided into 3 groups:

1. General

Parameter Description

Name A mandatory attribute that defines the process name.
Sequence number A mandatory attribute that defines the order in which the process is executed.
Data source A mandatory attribute that specifies in which data source the process will be executed.

Type A mandatory attribute that defines the type of process:

 • SHOW
 • PROCESS
 • AJAX

Post-execution
commit

The flag determining the necessity to terminate the transaction

Error text A string of text that will be displayed if the process terminates with an error.
Sql code A mandatory attribute that defines the code of the SQL query.

2. Elements

Parameter Description

Input Names of variables, separated by commas, containing input parameters
Output Names of variables, separated by commas, where the results will be stored

 Documentation, Release 5.1.2

33 7.2 Settings

3. Conditions

Condition type - defines the condition under which the process, action or event will be executed.

Types of conditions

There are 11 types of conditions available to the developer:

1. Always - is executed always.

2. Exists (SQL query returns at least one row) - allows to execute a validation SQL query. The condition is
considered to be met if the query returns at least one row.

3. Value of Item / Column in Expression 1 Is NOT NULL - built-in condition for filling a field or a table cell. The
condition is considered to be met if the input field or table cell contains any value.

4. Value of Item / Column in Expression 1 != Zero - built-in condition for the value different from 0 (zero) of the
input field or table column. The condition is considered to be met if the checked object contains a value different
from 0 (zero).

5. Value of Item / Column in Expression 1 Is NULL - built-in condition for NULL value (empty value) of input
field or table column. The condition is considered to be met if the checked object contains NULL (empty value).

6. Value of Item / Column in Expression 1 Is NULL or Zero - built-in condition on the value of NULL (empty
value) or 0 (zero) of the input field or column of the table. The condition is considered to be met if the checked
object contains NULL (empty value) or is equal to 0 (zero).

7. Value of Item / Column in Expression 1= Zero - built-in condition for the value 0 (zero) of the input field or
column of the table. The condition is considered to be met if the check object will contain the value 0 (zero).

8. Value of Item / Column in Expression 1 Is NOT null and the Item / Column Is NOT Zero - a built-in condition
for filling and value other than 0 (zero) of an input field or table column. The condition is considered to be met if
the checked object does not contain NULL (empty value) and is not equal to 0 (zero).

9. NOT Exists (SQL query returns no rows) - allows to execute a verification SQL query. The condition is
considered to be met if the query returns no rows.

10. SQL Expression - allows to execute an SQL query that returns TRUE or FALSE. The query input field contains
only the body of the query, without SELECT and/or FROM keywords. If some subquery is to be executed, it
must be wrapped in "(" ")". The condition is considered to be met if the query returns TRUE.

11. Never - never to be performed.

7.2.5 Authorization schemes
General description

The authorization scheme determines whether a page is available to a particular user. If authorization is successful, the
requested page is displayed to the user. If an error occurs during authorization, an error message is displayed.

Creating an authorization scheme

The list of authorization schemes is located in the "Settings" -> "Authorization schemas" section:

 Documentation, Release 5.1.2

34 7.2 Settings

Right click the items of the "Authorization schemas" list, and a context menu with buttons for creating a new scheme
and deleting the selected one will be displayed:

Note: To access the page, you must be logged into the account with the access role above VIEW.

A new authorization scheme is created by pressing the "Create" button. The form to create the authorization scheme
will open:

Attributes:

• Name is a mandatory attribute that specifies the name of the authorization scheme to be created.

• Data source is a mandatory attribute defining the data source for the created authorization scheme.

• Input is a mandatory attribute that defines a list of input parameters for authorization.

 Documentation, Release 5.1.2

35 7.2 Settings

• Error Text is a mandatory attribute that defines the text of the authorization error.

• SQL is a mandatory attribute that defines the SQL query for authorization.

After clicking the "Save" button and confirming the entered data, the authorization scheme will be entered into the
database and will be available for viewing, editing and deleting.

Editing the authorization scheme

To edit the authorization scheme, select the needed one. After clicking on the scheme, a form (similar to the form for
creating a new authorization scheme (see "Creating an authorization scheme" above) will open with the information
about the selected scheme.

Edit the attributes you need and save their new values by clicking the "Save" button.

To delete the scheme, right click on the scheme, click the "Delete" button in the menu and confirm the action.

7.2.6 Authentication schemes
General information

Authentication is the process of verifying the identity of each user who accesses the application.

The authentication process requires the user to provide certain login credentials, such as a username and password. If
the credentials pass, the user is granted access to the application, if not, access is denied.

After successful user authentication, the value of the global variable APP_USER is set (see Global variables). When the
user moves from page to page, the APP_USER value is used to identify the user.

The PGHS Application Server supports authentication and authorization using the following schemes:

• By login and password - CUSTOM

• Microsoft LDAP

• Microsoft Kerberos SSO

• LDAP

• Kerberos SSO

• Open ID Connect

When developing an application in the XRAD builder, the developer defines possible authentication schemes by
specifying the scheme name and type. Thus, the application can have many schemes of the same type, which allows
flexible customization of user authentication. For example, it is possible to implement authentication of users of
different Active Directory domains.

Creating an authentication scheme

The page with authentication schemes is located in the "Settings" -> "Authentication schemes" tab, one can add a new
scheme by pressing the "Add" button. Besides, any scheme can be deleted by pressing the button with the trash can
icon, to apply all changes you should press the "Save" button. The parameters of each authentication scheme are set
directly in the auth_config.json file of the PGHS application server, the description of this file and parameters can be
found in the PGHS documentation.

 Documentation, Release 5.1.2

7.3 Working with pages 38

Note: To access the page, you must be logged into the account with the access role above VIEW.

At startup, the PGHS Application Server loads schemas from the auth_config.json file and maps them by name and
type to parameters in the XRAD database.

For each authentication page of the application under development, you can create a different set of authentication
methods:

Example 1:

 Documentation, Release 5.1.2

7.3 Working with pages 39

Example 2:

7.3 Working with pages
A page is the main block of the web application which is being developed. To display the list of available pages, select
the "Pages" section in the main menu. All possible actions with pages are available from the context menu opening by
the mouse right click. The developer can create a new page, duplicate, export and delete the current page, as well as
create folders to group pages.

 Documentation, Release 5.1.2

7.3 Working with pages 40

7.3.1 Creating a new page
One can create a new page using the context menu or the "+" button. In the page creation window one needs to
specify the attributes of the new page:

• Name - string name of the page

• Number - integer page identifier

• Page mode - the page view template.

 Documentation, Release 5.1.2

7.3 Working with pages 41

The following types of pages are available:

• Standard - a page with a side menu and navigation panel in the page header.

• A modal window is a page that is displayed on top of the parent (calling page).

• Login - page for authentication

• Minimalistic - a simple page without a side menu and with a header without a navigation panel.

The "Page editor" will open after the page has been created.

7.3.2 Page Editor
All work on forming a new page takes place in the Page editor.

At the top of the Page editor is a toolbar that displays the page ID and name, a button for copying the page address to
the clipboard, and buttons for refreshing, previewing, locking and saving page changes.

Below the toolbar there are three vertical areas of the Page editor, which logically follow the concept of the entire
development environment:

• Main menu

• Parameter list

• Code editing area

Main menu of the page editor

The main menu consists of 3 tabs:

• Elements

• Events

• Processing

Elements

The Elements tab displays the components of the page - regions, form elements, and buttons.

 Documentation, Release 5.1.2

7.3 Working with pages 42

Components can be placed at the page level in a specific page region (Top, Left, Body, Footer, Right) or can be nested
in the regions in a specific region position. The basic construction that is created from the context menu is a region. A
region can include child regions, buttons, and other visual components that are defined by the region type.

If no page region is selected, items are created in the center region (Body) by default.

Note: buttons can only be created within a region.

Besides, it is possible to create page parameters from the context menu of the page name. These parameters, unlike
global application parameters, are available only within a specific page.

 Documentation, Release 5.1.2

7.3 Working with pages 43

7.3.3 Events
The Events tab displays a list of events and actions grouped by types of possible events. To create a new event, the
developer should call the context menu by right click.

After creating an event, you should configure its parameters in the parameters area:

• Name is a mandatory attribute that defines the name of the event.

• Data source is a mandatory attribute that defines the data source for storing the list item.

• Sequence is a mandatory attribute, a sequence number according to which the action will be executed.

• Event is a mandatory attribute that defines the type of event.

• Selection type is a mandatory attribute that defines the type of page element to trigger the event.

• Display condition type is a mandatory attribute that specifies the type of condition that must be met to trigger the
event.

To apply the changes, one must save the changes via the button in the toolbar.

 Documentation, Release 5.1.2

7.3 Working with pages 44

One can bind an Action to the event in the form of JavaScript code. The action can be created from the context menu
using the "Add code" button.

It is also necessary to define parameters for the action to be created:

• Sequence is a mandatory attribute, a sequence number according to which the action will be executed.

• Event is a mandatory attribute, defines the name of the event to which the action code is bound.

• Initialize on load - defines the execution of the action when the page is loaded.

• JS code is a mandatory attribute, defines the JavaScript code that will be executed when the event occurs.

Clicking the "Add" button in the tab area of the editor will open the "JS Code" tab with an interactive code editor. Saving
JS code changes is done in the code editor, and saving parameters is carried out using the button in the toolbar.

 Documentation, Release 5.1.2

7.3 Working with pages 45

7.3.4 Processing
When running an application, it is often necessary to perform requests to the database. For this purpose, XRAD
provides a mechanism for processing requests for each page - processing.

The Processing tab displays the list of request handlers grouped by process type or handler call type. The composition
of the context menu available at right click is determined by the group type:

Processing provides the following types of request handlers:

• A process is the main mechanism of interaction between an application and a database. Processes are executed
when various requests (Request) are received from the application. When a request is received from the
application, all processes of the corresponding type are executed in the Sequence order.

• A branch is a process that redirects to another application page or link when a Server-side Condition is met.

• Validation is the process of verifying that the data entered by the user is correct.

• REST call is a process that allows to call a third-party REST API. Allows the application to process and make
requests to third-party services. The call will be made by the PGHS application server.

• The Data Grid process is the process for handling changed data in DATAGRID.

 Documentation, Release 5.1.2

7.3 Working with pages 46

Name

Type

Description
Process Name.

• Download is the process that allows to upload a file from the database to the client.

• Authentication schema - the process of authenticating a user.

Processes are also grouped by process type:

• Before page loading - processes that are executed before the page is loaded. Their main purpose is to prepare
components for interaction with the user (for example, to fill form fields with values from the database). The
following types of handlers can be executed before the page is loaded: processes, REST calls and branches.

• Processing - processes of this type are performed when the form is submitted to the server (submit).

• After processing - processes of this type are executed after page processing. For example, transitions to other
pages by pressing buttons.

• Ajax callback - processes of this type allow to interact with the database on a request from a JS script.

The response from Ajax processes must be handled by the developer in a JS script. The other types of processes can
interact with the user independently, reporting whether the request was successful or whether an error occurred.

Processes

To create a process type handler, it is necessary to select by right click the corresponding item of the context menu and
fill in the parameters of the process to be created.

continues on the next page

7.3 Working with pages

 Documentation, Release 5.1.2

Parameter
Table 1 - continued from previous page

Description Typ
e

47

Process Point List The type of the process.
 The type affects the order in which code is called. XRAD provides

the following types of processes:
• Before the page loads
• Processing
• Ajax callback

Data source List The name of the data source for this process.

Request name Text Specifies the name of the request. If specified, the process will only be executed
when the value of the global variable REQUEST corresponds to the entered value.

Accept modal

Switch

Determines whether the modal window should be closed after the process is
executed.

Commit TX Switch

Source - SQL Text area

Specifies whether a COMMIT transaction should be called after successful
completion of a process. When COMMIT is called, all changes made to the
database by processes that were executed before this process will be written to the
database. After that, XRAD will open a new transaction to execute subsequent
processes.
Specifies the SQL query to be executed.

Source
parameters

Output para-
meters

Text /
Builder
window
Text /
Builder
window

Specifies the elements to be passed to the executable request as variables.

Defines the output elements. If the process needs to set the values of session
variables, it is necessary to specify them in this field.

Sequence Number Specifies the sequence of process execution in a list of processes of the same
type.

Success message

Error message

Text
area

Text
area

Defines the message to be displayed to the user when a process is successfully
executed. If a chain of processes is called, the last successful execution message
will be displayed.
Defines the error message.

Display
conditions - Type

List Specifies the type of condition for displaying the region on the page. By default
- Always. Depending on the type, additional condition parameters are required.
For Always and Never, no additional conditions are required.

Display
conditions - First
condition

Text
area

Query in SQL format. The parameter is applicable for the following types of
conditions:

• Exists (SQL query returns at least one row). If the query returns at least
one row, the region will be displayed on the page.

• NOT Exists (SQL query returns no rows). If the query returns no rows,
the region will be displayed on the page.

Display
Conditions - SQL
Expression

Text
area

Logical expression in SQL language. If the expression returns true, the region will
be displayed on the page. The parameter applies to the SQL Expression condition
type.

continues on the next page

7.3 Working with pages

 Documentation, Release 5.1.2

Parameter
Table 1 - continued from previous page

Description Typ
e

48

Note: When a request from an application is made, first all global processes that meet the conditions of the request are
executed according to their sequence numbers, followed by the processes of the currently open page.

Process conditions

There are 2 types of conditions to execute the process:

1. Request,

2. Server-side condition.

Request execution

When running, the application is constantly sending various requests. Whether it is a page submit or a request from a
JS script. Depending on the source of the request, processes of different types are executed, but they are all united by
the type of execution - all processes of the same type are executed in the sequence order. The Request Name field is
used to prevent unnecessary processes from being executed. If the Request Name field is empty, the process will be
executed at any request from the application, if the process type matches the request type. However, if you specify a
specific request name in the Request Name field, the process will be executed only if the name of the request sent by
the application matches the name in the Request Name field.

The same effect can be achieved by using a Server-side Condition with the SQL Expression type and specifying the
REQUEST field as the input field.

Display
conditions – First
input

Builder
window

Specifies a list of input parameters for the SQL query in the "First condition" or
“SQL Expression” field.
For each substitution variable in the request, an input parameter must be defined.
Can accept values of global variables and page input and selection elements. Can
be entered as text or selected in the builder. Applicable for condition types:

Exists (SQL query returns at least one row).
NOT Exists (SQL query returns no rows).
SQL Expression.

Display
Conditions -
Element

Builder
window

Allows to select the element, depending on the value of which the region is
displayed or not. Applies to the following types of conditions:

Value of Item / Column in Expression 1 Is NOT NULL. Region will be
displayed if the value of the element is not NULL.
Value of Item / Column in Expression 1 != Zero. The region will be
displayed if the item value is not equal to 0.
Value of Item / Column in Expression 1 Is NULL. The region will be
displayed if the item value is NULL.
Value of Item / Column in Expression 1 Is NULL or Zero. The region will
be displayed if the item value is NULL or zero.
Value of Item / Column in Expression 1= Zero. The region will be
displayed if the value of item is 0.
Value of Item / Column in Expression 1 Is NOT null and the Item /
Column Is NOT Zero. The region will be displayed if the item value is not
NULL and is not equal to zero.

 Documentation, Release 5.1.2

7.3 Working with pages 49

Server-side condition

There are 11 types of process execution conditions available to the developer:

1. Always - is executed always.

2. Exists (SQL query returns at least one row) - allows to execute a validation SQL query. The condition is
considered to be met if the query returns at least one row.

3. Value of Item / Column in Expression 1 Is NOT NULL - built-in condition for filling a field or a table cell. The
condition is considered to be met if the input field or table cell contains any value.

4. Value of Item / Column in Expression 1 != Zero - built-in condition for the value different from 0 (zero) of the
input field or table column. The condition is considered to be met if the checked object will contain a value
different from 0 (zero).

5. Value of Item / Column in Expression 1 Is NULL - built-in condition for NULL value (empty value) of input
field or table column. The condition is considered to be met if the checked object contains NULL (empty value).

6. Value of Item / Column in Expression 1 Is NULL or Zero - built-in condition on the value of NULL (empty
value) or 0 (zero) of the input field or column of the table. The condition is considered to be met if the check
object contains NULL (empty value) or is equal to 0 (zero).

7. Value of Item / Column in Expression 1= Zero - built-in condition for the value 0 (zero) of the input field or
column of the table. The condition is considered to be met if the checked object will contain the value 0 (zero).

8. Value of Item / Column in Expression 1 Is NOT null and the Item / Column Is NOT Zero - a built-in condition
for filling and value other than 0 (zero) of an input field or table column. The condition is considered to be met if
the checked object does not contain NULL (empty value) and is not equal to 0 (zero).

9. NOT Exists (SQL query returns no rows) - allows to execute a verification SQL query. The condition is
considered to be met if the query returns no rows.

10. SQL Expression - allows to execute an SQL query that returns TRUE or FALSE. The query input field contains
only the body of the request, without SELECT and/or FROM keywords. If some subquery is to be executed, it
must be wrapped in "(" ")". The condition is considered satisfied if the query returns TRUE.

11. Never - is never executed.

Transaction management

When executing a chain of database requests, sometimes a situation arises where an error in the current step should not
cancel the results of the previous steps. This situation is solved by transaction completion when the process is
successfully completed. To complete the transaction, the process must set the transaction commit flat (Commit TX).

If this flag is not set, then, in case of an error in any of the processes, all changes made by other processes that do not
have the transaction completion flag set will be canceled. Thus, it is possible to split a large action into groups of
smaller actions, errors in which will not affect the actions performed in the previous groups.

Closing a dialog

Applications often use modal windows to perform certain actions. For example: user creation. When pressing the
"Create" button, a certain process bound to the button is executed. In such cases, the task of the modal window is
completed, and the window can be closed. To make the task easier, the processes have

 Documentation, Release 5.1.2

7.3 Working with pages 50

a special flag. If this flag is set, the modal window will be automatically closed with the result Accept if the process is
successful.

If several processes successfully respond to a request, the modal window will be closed automatically only if the last
process in the process chain has the Accept Modal flag set.

Branches

When running an application, there are situations when it is necessary to automatically switch to some page when
loading the selected page or after executing a certain process. For this purpose, branches - transitions between pages -
are used.

If the branch is located in a block, the transition to the page specified in the Link field will be performed when the page
on which the Branch is located is loaded if the condition in the Server-side Condition block is met. For unconditional
redirection in the Server-side Condition block, it is necessary to use the value Always, for disabling redirection - Never.

If the Branch is located in the «After Processing» block, the transition to the page specified in the Link field will be
performed when all processes are completed and the condition in the Server-side Condition block is met. For
unconditional redirection in the Server-side Condition block, it is necessary to use the value Always, for disabling
redirection - Never.

Please find below the unique parameters for processes of the branch type:

 Documentation, Release 5.1.2

7.3 Working with pages 51

Parameter Type Description

Name Text Branch Name.
Data Source List Specifies the data source for this branch.

Transition location List Defines the location where the transition is to be performed.

• Before page load - the transition will be executed before the page is loaded.
This item is convenient to use in case it is necessary to implement
redirection of the user depending on certain conditions.

• After processing - redirection will be executed after the execution of the
processes is complete.

Sequence Number Defines the sequence of process execution in the process list
 of the same type.
Behavior - Type List Specifies the type of page transition to execute:

 • Redirect URL
 • Function that returns the URL

Link Text /
Builder
window

Specifies a link to a page if the transition type "Redirect URL" is set.

Source - SQL Text area Defines an SQL query that returns a URL

Request
parameters

Text /
Builder
window

Defines the elements to be passed to the executable request
as variables.

Output para- Text /

Builder
window

Defines the output elements. If the process needs to set the values
meters of session variables, one must specify them in this field.

Display conditions
Type

List Specifies the type of condition for displaying the region on the page. By default
 - Always. Depending on the type, one needs to specify additional parameters

 No additional conditions are required for Always and Never.

Validation

User interaction is required in a fully-fledged application. All user actions and data must be stored in a database.
However, the user may intentionally or unintentionally enter incorrect data. To avoid this, XRAD provides data
validation. Validation is the verification that the data entered by the user into the form input fields is correct.

Types of validators

In XRAD, the validation process is a call to various functions and procedures (hereinafter referred to as validators) that
are executed before the data is sent to the server for processing.

 Documentation, Release 5.1.2

7.3 Working with pages 52

There are 11 types of validators available to the developer:

1. Exists (SQL query returns at least one row) - allows to execute a validation SQL query. The check is considered
successful if the query returns at least one row.

2. Value of Item / Column in Expression 1 Is NOT NULL - built-in check if a field or a table cell is filled. The
check is considered to be passed successfully if the input field or table cell contains any value.

3. Value of Item / Column in Expression 1 != Zero - built-in check for a value different from 0 (zero) of an input
field or table column. The check is considered successful if the checked object contains a value other than 0 (zero).

4. Value of Item / Column in Expression 1 Is NULL - built-in check for NULL value (empty value) of input field
or table column. The check is considered successful if the checked object contains NULL (empty value).

5. Value of Item / Column in Expression 1 Is NULL or Zero - built-in check for NULL (empty value) or 0 (zero)
value of input field or table column. The check is considered successful if the checked object contains NULL
(empty value) or is equal to 0 (zero).

6. Value of Item / Column in Expression 1= Zero - built-in check for value 0 (zero) of input field or table column.
The check is considered to be passed successfully if the checked object contains the value 0 (zero).

7. Value of Item / Column in Expression 1 Is NOT null and the Item / Column Is NOT Zero - built-in check for
fullness and value other than 0 (zero) of an input field or table column. The check is considered successful if the
checked object does not contain NULL (empty value) and is not equal to 0 (zero).

8. NOT Exists (SQL query returns no rows) - allows to execute a validation SQL query. The check is considered
successful if the query returns no rows.

9. SQL Expression - allows to execute SQL query returning TRUE or FALSE. The query input field contains only
the body of the request, without SELECT and/or FROM keywords. If necessary to execute a subquery, it must
be wrapped in parentheses "(" ")". The check is considered successful if the query returns TRUE.

10. Function returning Error Text - allows to execute SQL query returning error text. In the query field it is necessary
to specify a full query returning a string. The check is considered successful if the query returns NULL. Otherwise,
the error text returned by the query will be displayed.

11. Regular Expression - allows to check the value of a form field by a regular expression. The Item field contains
the field to be checked, and the Value field contains the regular expression. The check is considered successful
if the value of the Item field matches the regular expression.

There is also a separate type of validation - a flag that determines whether a form field must be filled in. For any input
field it is possible to set a flag that the field must be filled in. In this case, even if no other validators are generated, when
trying to send data to the server, a check will be performed to see if the field is filled with data.

Validation error

If an exception occurs in any of the validators present on the form, sending them to the server is blocked and the user
receives a developer-defined warning. If the validator is bound to an input field, the input field where the exception

 Documentation, Release 5.1.2

7.3 Working with pages 53

occurred will be highlighted in addition.

System validators

If a field is marked as mandatory but it is not filled in, the system validator will be triggered, and the user will be notified
about the need to fill in mandatory fields with a pop-up tooltip. If additional validation is to be added to an input field, a
validator must be created for this field. In this case, the system validators will be called first, and then the user validators
will be called.

Conditions for performing validation

Since validations are performed automatically when a page is submitted, it is often necessary to limit their execution.
For this purpose, XRAD provides a block of conditions for validations.

There are 11 types of validator fulfillment condition types available to the developer:

1. Always - is executed always.

2. Exists (SQL query returns at least one row) - allows to execute a validation SQL query. The condition is
considered to be met if the query returns at least one row.

3. Value of Item / Column in Expression 1 Is NOT NULL - built-in condition for filling a field or a table cell. The
condition is met if the input field or table cell contains any value.

4. Value of Item / Column in Expression 1 != Zero - built-in condition for the value different from 0 (zero) of the
input field or table column. The condition is met if the checked object will contain a value different from 0 (zero).

5. Value of Item / Column in Expression 1 Is NULL - built-in condition for NULL value (empty value) of input
field or table column. The condition is met if the checked object contains NULL (empty value).

6. Value of Item / Column in Expression 1 Is NULL or Zero - built-in condition on the value of NULL (empty
value) or 0 (zero) of the input field or column of the table. The condition is met if the checked object contains
NULL (empty value) or is equal to 0 (zero).

7. Value of Item / Column in Expression 1= Zero - built-in condition for the value 0 (zero) of the input field or
column of the table. The condition is met if the checked object contains the value 0 (zero).

8. Value of Item / Column in Expression 1 Is NOT null and the Item / Column Is NOT Zero - a built-in condition
for filling and value other than 0 (zero) of an input field or table column. The condition is met if the checked
object does not contain NULL (empty value) and is not equal to 0 (zero).

9. NOT Exists (SQL query returns no rows) - allows to execute a verification SQL query. The condition is met if
the query returns no rows.

10. SQL Expression - allows you to execute an SQL query that returns TRUE or FALSE. The query input field
contains only the body of the query, without SELECT and/or FROM keywords. If some subquery is to be
executed, it must be wrapped in "(" ")". The condition is met if the query returns TRUE.

11. Never - is never executed.

 Documentation, Release 5.1.2

7.3 Working with pages 54

REST calls

A REST call is a process that allows to call an external REST API.

Below we review the parameters unique to this type of process:

Parameter Type Description

Source - URL Text Specifies the URL to execute the request. The URL must be specified in full
including the protocol.

HTTP-method List Specifies the HTTP method for executing the request:
• GET
• POST
• PUT
• DELETE
• PATCH

HTTP headers Builder window Defines HTTP headers. Headers can include static
 values, as well as accept the values of the form elements.
URL query Builder window Defines request parameters to be added to URL. The parameter values can be

parameters either static or taken from an input element.
Payload type List Specifies the body type of the request. Possible options:

• None
• Static value
• Form-encoded
• SQL

Response List Specifies the type of service response handler:
processing • Absen t

• Assign variables
• SQL handler

Variable Builder window Determines the correspondence between form elements and response elements

assignment in JSON format. One can specify the JMES path as an argument of the response
handler.
If the path returns only JSON (string, number, Boolean value), the element will
contain this value. If the JMES path returns a compound value (object or array),
the returned value in JSON format will be passed to the element.

SQL Builder window Defines the SQL handler.
handler
Inputs Text / Specifies the elements to be passed to the SQL query as variables.
Parameters Builder window

Downloads

The process of downloading a file from a web application. When creating the download process, one needs to set the
parameters:

 Documentation, Release 5.1.2

7.3 Working with pages 55

Parameter Type Description

Name Text The name of the download process.
Data Source List Specifies the data source for this process.

Request Name Text Specifies the name of the request. If specified, the process will only be executed

 when the value of the global variable REQUEST corresponds to the
 to the value entered.

Sequence Number Defines the sequence of process execution in the process list
 of the same type.

Source - SQL Text area Specifies the SQL query that returns the URL.

File Name Column List Specifies the column containing the name of the file.

File Column List Specifies the column that contains the file data.

Mime Type
Column

List Specifies the column containing the mime type of the file.

Content
Disposition

List Specifies the content of the Content-Disposition header:
• Attachment
• Inline

The header is responsible for how the content of the file is to be
displayed in the browser. If attachment is specified, the file will be
downloaded to the user's computer. If inline is specified, the content
of the file will be displayed in the browser.

Authentication schemes

Authentication pages are used to restrict access to non-public application pages. Authentication methods are defined by
authentication processes, which in their turn refer to global authentication schemes.

Below one can see the unique parameters of the authentication process:

Parameter Type Description

Authentication List
Type

Specifies the authentication type. Supported authentication types:
• Custom

 • LDAP
 • Microsoft LDAP
 • Kerberos SSO
 • Microsoft Kerberos SSO
 • OIDC

Name List Specifies the name of the authentication process from the list of global
authentication schemes in accordance with the selected type.

Source - List
Login

Specifies the form element to be used for login input. This attribute is available
for LDAP and Microsoft LDAP schemes.

Post-Login Text area Specifies the SQL query that will be executed after successful authentication.
Function

 Documentation, Release 5.1.2

7.3 Working with pages 56

Page Options

A specific set of parameters is available for each page you create:

• Name is a mandatory attribute that defines the name of the page.

• Page mode is a mandatory attribute that defines the page view template. The following template options are
available: standard, modal window, login, minimalist (description can be found in the “Page Creation” section).

• JS file URLs is a list of JavaScript file URLs with the code to be loaded for this page.

• JS functions and global variables declaration - used to define JS variables and functions at the page level.

• CSS file URLs -is a list of CSS file URLs that will be loaded for this page.

• Inline CSS - is used to define styles at the page level.

• Width - defines the width of the modal window. Available only for Modal Window page mode.

• Authorization scheme - determines whether the page is available to a specific user (See "Authorization
schemes" section).

• Public page - determines whether a user needs to be authenticated (See “Authentication Schemes” section).

• Page protection - determines whether the parameters in the page request should be protected by a checksum.

 Documentation, Release 5.1.2

7.3 Working with pages 57

7.3.5 Modal page
A modal page is a child window on top of the parent window, located in the same browser window. The modal page
remains active until the user finishes working with it and closes it. The user cannot interact with the parent part of the
page until the modal page is closed.

Calling a modal page

There are 2 ways to call the modal page:

• By link - this method does not provide for processing the result of the modal page execution.

• From the Javascript code

An example of calling a modal page using JavaScript:

 Documentation, Release 5.1.2

7.3 Working with pages 58

JavaScript call code can be used as a link value through the Redirect to page action, or through a Click type event on
the selected button.

Closing a modal page (the "Cancel" event)

Closing the modal page is performed via Javascript code executed on the current modal page:

Updating data on the parent form

To handle the closing of a modal page by the required event, it is necessary:

Create an Event of type Dialog Closed (when closing via the Cancel event) or Dialog Accept (when closing via a
process) on the element from which the modal page is called and specify the JS Code property there.

The processing of the result of a modal page execution can also be defined when the modal page is called in the
onClose, onAccept, or onDecline blocks:

Duplicate, delete, group and export a page

In addition to creating a page, the following actions are available in the page list from the context menu by right
clicking the page list:

 Documentation, Release 5.1.2

7.3 Working with pages 59

• Duplicate page - creates a copy of the selected page. For a new page, one should specify a new name, sequence
number and view.

• Create folder - creates a folder with a specified name, which is used to group pages.

• Export - exports the page as a *.sql file with SQL code.

• Delete - deletes the selected page.

7.3.6 Page security
Find below the mechanisms for securing and protecting pages.

Public page

A public page is a page that does not require user authentication and authorization. You can set the public attribute in

the page settings via the ‘Public page’ property.

If the "Public page" property is not set or is set to "No", the user authentication page is displayed when the page is
requested.

This property will be applied to the page after the changes are saved via the "Save" button.

Authorization schemes

You can determine whether a page is available to a specific user in the page editor via the “Security - authorization
schemes” property.

In the drop-down list, one can see the available authorization schemes.

 Documentation, Release 5.1.2

7.5 Regions 63

The selected authorization scheme will be applied to the page after saving changes via the "Save" button.

If the user does not have permissions to view the page, the error message specified in the authorization scheme will be
displayed.

Checksums

A checksum is used when it is necessary to protect page parameters in a URL from modification. The checksum is
generated for each link for a specific user. Changing the parameters in the URL will cause a checksum error.

If the page is checksum protected, an additional GET parameter “cs” appears in the URL:

The checksum consists of:

• a set of page parameters,

• special character sets called salt. The salt is generated for each user session.

If the user manually provides a link to a page that is protected by a checksum, the system knows the link and adds the
checksum to it.

Page protection via checksum is configured separately for each page.

7.4 Visual components
Visual components are the key elements of the PGHS user interface. Most web application pages consist of many
components that the developer groups into containers. In XRAD, the universal container is the region. Regions can
contain input fields, buttons, and other regions, or they can directly display data in the form of reports, charts, and
other ways of presenting information. Regions default to the WRAPPER type and are the basic components of a page.
You can convert a region to another visual component by changing its type. New regions are created via the context
menu by right clicking.

 Documentation, Release 5.1.2

7.5 Regions 64

7.4.1 Location of components on the page
The position on the page is a mandatory parameter for a region.

XRAD provides a choice of five location options:

• Top. This is a convenient place to place "the Breadcrumbs" region or another variant of the header.

• Left. It is a good option to place the navigation panel, object tree, or filter form.

• Body (center). Here are the regions with the main contents of the page: reports, input forms, etc.

• Right. Convenient for placing an additional toolbar.

• Footer. The area for placing general information. The buttons are located here on the modal window view pages.

Once created, the region can be moved to another area of the page by changing its ‘Position’ property in the
parameters.

7.5 Regions
Regions can be parent, child or independent in relation to each other. Many other regions can be created within a
region - child regions, regions with unlimited nesting, as well as buttons.

 Documentation, Release 5.1.2

7.5 Regions 65

7.5.1 Parameters of regions
After creating a region, one needs to customize its settings.

The table in this section lists all the parameters of the regions. Depending on the type of the region, their set may
differ.

Parameter Type Description

Name Text Region Name. Defines how the region is displayed in the object tree and other
component settings, it is also displayed in the region header on the application
page.

Table 2 - continued from previous page
Description

 Documentation, Release 5.1.2

7.5 Regions

Parameter

66

Type
Type List Region Type. Defines a set of parameters and the presence of special attributes of the

region, displaying the region on the application page.
Data source

Sequence

Parent region

List The name of the data source for this component.

Number The sequence number of the region. Specifies the position of the region on the grid
within the location/parent region.

List In the list you can select from a page and regions that are not children of this one. If
a page is selected, the region will be displayed inside the position area, otherwise
inside the selected region.

Position List Selects the location area of the region.
Column
Span

 Number Select Automatic or number 1-12. Specifies the number of grid cells occupied by
the region. The default is 12.

Start new line

Switch Determines the vertical position on the grid.

Theme settings Window
Settings

Customizing the region theme.

Component
classes

Text Classes of child components within a region.

CSS classes Text Region css classes.
Show Header Switch Determines whether the region name is displayed in the header and the visual area

of the header (important for button position - "in header").
Collapsible Switch

Expanded Switch

Determines whether the region will be collapsible.

Determines the state of the region when the page is opened. If selected, the region
will be displayed in the expanded state. The parameter is only available if
"Folded"="yes".

Store state Switch Determines whether the tab selected by the user is saved. When entering the page,
the last tab selected by the user will be displayed. The parameter is available only
if "Tabbed"= "yes".

Static identifier Text Specifies an identifier for the region for further reference from jsAPI.

Source - Type List Specifies the type of the data source. Applies to regions of type HTML. On

two choices:
• Static. You will need to enter HTML text in the source text field.
• SQL. In the SQL field you will need to enter a query to the database.

Source –
HTML code

Text
area

HTML code. Applies to HTML region type with the selected source type -
Static.

Source - SQL Text
area

Database query. The output format is determined by the region type and its attributes. The
parameter is applicable for the following types of regions: HTML (with selected SQL
source type)

• REPORT
• TREE
• CHAT
• CHART
• CALENDAR
• DATAGRID

Table 2 - continued from previous page
Description

 Documentation, Release 5.1.2

7.5 Regions

Parameter

67

Type

Source - Text / Specifies the list of input parameters for SQL query in the Source - SQL field.
Source input Builder Applies to region types for which the Source - SQL parameter exists
 window (see the line above). An input parameter must be defined for each
 substitution variable in the query. Can accept values of global variables
 and page input and selection elements. Can be entered as text or selected
 in the builder.

Global variables and page input and selection elements. You can enter as text or
select in the constructor.

Source - List List Binds the list to a region. All lists created in the application will be presented for
 selection. The option applies to the following types of regions:

• BREADCRUMB
• PAGE NAVIGATION
• CARDS
• WIZARD
• TILES

Display List Specifies the type of condition for displaying the region on the page. The default
Conditions - Type. - Always. Depending on the type, you will need to specify additional condition
 parameters. No additional conditions will be required for Always and Never.
Display Text Query in SQL format. The parameter is applicable for the following types
Conditions - area of conditions:
The first condition • Exists (SQL query returns at least one row). If the query returns at least
 one row, the region will be displayed on the page.

• NOT Exists (SQL query returns no rows). If the query did not return any
rows, the region will be displayed on the page.

Display Text A logical expression in the SQL language. If the expression returns true,
Conditions - area the region will be displayed on the page. The parameter applies to the
SQL Expression condition type.

Display Text / Specifies a list of input parameters for the SQL query in the “First Condition”
Conditions - Builder or “SQL Expression” field. An input parameter must be defined for each
The first input window substitution variable in the query. Can accept values of global variables and
 page input and selection elements. Can be entered as text or selected in the
 builder. Applies to condition types:

• Exists (SQL query returns at least one row).
• NOT Exists (SQL query returns no rows).
• SQL Expression.

continues on the next page

7.6 Components 68

 Documentation, Release 5.1.2

7.5.2 Arrangement of components on the grid
Visual components of the page - regions and form elements (input, selection and form buttons) are arranged in a grid
of 12 columns. The grid for top-level regions (with the page as the parent) defines the position of the region within the
location area; for nested regions, the grid defines the position within the parent region, as it does for form elements.

In XRAD, the position of the component on the grid is controlled by the following parameters:

• Column Span. Accepts a value from 1 to 12, or Automatic. Specifies the number of grid cells occupied by the
component. The default value is 12 for regions and Automatic for form elements.

• Start New Row. A switch that takes the value true / false. Indicates whether the component should occupy the
specified number of cells from the left starting from a new row, or whether it should continue the row following
the previous component in an order determined by the sequence property.

No more than 12 cells can be filled in one grid row. If the sum of column ranges for components without row transfer
exceeds 12, a rendering error will be displayed when trying to open the page.

In case the sum of the components of one row is less than 12, the remaining cells will be filled if at least one region per
row has Automatic in the number of columns, otherwise there will be empty space.

7.5.3 Attributes of the regions
For some types of regions, one must also specify component-specific attributes:

Display Text /
Conditions -
Element window

Allows you to select an item depending on the value of which the region will be
displayed or not. Applies to the following types of conditions:

Value of Item / Column in Expression 1 Is NOT NULL. The region will
be displayed if the item value is not NULL.
Value of Item / Column in Expression 1 != Zero. The region will be
displayed if the item value is not equal to 0.
Value of Item / Column in Expression 1 Is NULL. The region will be if
the item value is NULL.
Value of Item / Column in Expression 1 Is NULL or Zero. The region will
be displayed if the item value is NULL or zero.
Value of Item / Column in Expression 1= Zero. The region will be
displayed if the value of item is 0.
Value of Item / Column in Expression 1 Is NOT null and the Item /
Column Is NOT Zero. The region will be displayed if the item value is not
NULL and is not equal to zero.

7.6 Components 69

 Documentation, Release 5.1.2

7.6 Components

7.6.1 WRAPPER
WRAPPER is the main container for the regions. It is used for grouping and zoning components or child regions.

The main parameters of WRAPPER type regions are position on the page and display of the region name. Regions of

this type can be used to make blocks of any complexity and nesting.

Component customization

Component parameters are standard for the region.

7.6.2 BREADCRUMB
BREADCRUMB is a component to output a list-based navigation chain and page title.

To create the component, follow the steps below:

1. Select a page.

2. Create a new region in the "top" position.

3. Specify the region type as BREADCRUMB.

4. Create a list with type BREADCRUMB in the Lists section.

5. Specify the created list in the Source - List field.

Creating a list item

To display a navigation chain on a component, one needs to add the corresponding page element to a list of
Breadcrumb type bound to a region

7.6 Components 70

 Documentation, Release 5.1.2

In the BREADCRUMB type list, create a new element.

In the element settings, enter:

• Parent item - the previous node of the navigation chain,

• Name - the displayed title on the page,

• Page - binding to a page to display a header on it,

• Link - link to a page from the navigation chain.

For more information about working with the lists, see ‘Managing lists’ section.

Component customization

Apart from the need to specify the source list, the other parameters of the BREADCRUMB component are standard for
the region. For more details on the complete list of region parameters, see ‘Region parameters’ section.

7.6.3 BUTTONS
BUTTONS is a component for placing buttons.

Component customization

For this component all parameters are standard for the region.

Find below more details on the buttons.

The buttons can be placed in the body of any container, on a form, and in the headers and footers of any regions and
are used to call a process, event, or jump to another page, as well as to display drop-down lists.

Button parameters

Parameter Type Description

Name Text Button name
Data List Name of the data source for this component
source
Name Text Text on the button

Sequence Number Specifies the order of the button on the parent region within the location and
position.

continues on the next page

7.6 Components 71

 Documentation, Release 5.1.2

Table 3 - continued from previous page

Parameter Type Description

Parental List Specifies the region in which the button will be displayed
region
Location

List Method for determining the position of the button. For all parent regions, except
the form, has one value to choose from - REGION. There are three options in
total:

• REGION. Default option. The button is placed within the region at the
selected position in the specified order relative to the other buttons of the
position.

• ITEM. Applicable with a parent region of type FORM. The position of the
button is determined relative to the linked element in the specified order
among other buttons of the same position of the same linked element.

• FORM. Applicable with a parent region of type FORM. The button is
placed on the form, the order is determined by the order among other form
elements

Position List Specifies the relative position of the button. Applicable for options
REGION and ITEM locations. The following options are available for the
REGION location:

• Bottom Fluid. The button will stretch to its full width along the
bottom border of the region.

• Bottom Left. The button will be placed under the main content
of the region on the left side.

• Bottom Right. The button will be placed under the main content
of the region on the right side.

• Left Body. The button will be positioned to the left of the main
content in the region body.

• Right Body. The button will be positioned to the right of the
main content in the region body.

• Top Left. The button is located on the left side of the region
header in front of the region name. The button is only displayed
if the "Show header" region setting is enabled.

• Top Right. The button will be placed on the right side of the
region header. It will only be displayed if the region setting is
set to "Show Header".

For the ITEM location, there are two options:
• Left of Item. The button will be attached to the left border of

the input item.
• Right of Item. The button will be attached to the right border

of the input item.

Action List Behavior when the button is pressed. There are four options to choose from:
• Submit Page. Sends the form to the server, passes a static button identifier

to the process equal to the parameter.
• Redirects to Page. directs to the page specified in the link field.
• Defined by Dynamic Action. Causes the Click event.
• Open Dropdown list. Press the button to open a text menu, the contents of

which are determined by the linked list.

continues on the next page

7.6 Components 72

 Documentation, Release 5.1.2

Table 3 - continued from previous page

Parameter Type Description

Link Text / Allows you to specify a link to another page, call a dynamic script,
Builder or customize in the builder a link to a page within the application.
window Applicable for “Redirect to Page” action.

Source - List- List Specifies the list displayed in the context menu.
 Applies to "Open drop-down list" action.
Classes Text A list of the CSS classes of the button. This defines the button's color, icon, etc.
Static Text Button identifier passed to the REQUEST variable when the button is pressed.
identifier on it.
Display Condi- List Specifies the type of button display condition. The default is Always. For
tions - Type depending on the type, you will need to specify additional condition parameters.

No additional conditions will be required for Always and Never.
Display Text Query in SQL format. The parameter applies to the following types of conditions:
Conditions - area - Exists (SQL query returns at least one row). If the query returns at least
The first condition one row, the button will be displayed.

• NOT Exists (SQL query returns no rows). If the query returns no rows,
the button will be displayed.

Display Condi- Area Logical expression in SQL language. If the expression returns true,
tions - text the button will be displayed. The parameter applies to the
SQL-Expression SQL condition type Expression.

Display Condi- Text / Specifies a list of input parameters for the SQL query in the “First Condition”
 tions - Builder or “SQL Expression” field. An input parameter must be defined for each
The first window substitution variable in the query. Can accept values of global variables,
 input elements, and page selections. Can be entered as text or can be selected

in the builder. Applies to condition types:
• Exists (SQL query returns at least one row).
• NOT Exists (SQL query returns no rows).
• SQL Expression

Display Condi- Text / Allows you to select an item depending on whose value the column will
tions - Element Builder will be displayed or not. Applies to the following types of conditions:
 window • Value of Item / Column in Expression 1 Is NOT NULL. The button will

 be displayed if the item value is not NULL.
• Value of Item / Column in Expression 1 != Zero. button will be displayed

if the item value is not equal to 0.
• Value of Item / Column in Expression 1 Is NULL. button will be displayed

if the item value is NULL.
• Value of Item / Column in Expression 1 Is NULL or Zero. The button will

be displayed if the item value is NULL or zero.
• Value of Item / Column in Expression 1= Zero. The button will be

displayed if the item value is 0.
• Value of Item / Column in Expression 1 Is NOT null and the Item /

Column Is NOT Zero. The button will be displayed if the item value is not
NULL and is not equal to zero.

7.6 Components 73

 Documentation, Release 5.1.2

Button display

Depending on the type of location, the buttons may be displayed differently. For clarity, the possible variants are
shown in the screenshots.

For REGION locations:

For the ITEM location:

For the FORM location with a demonstration of the different classes of buttons:

7.6.4 CARDS
CARDS - region for graphical representation of the list in the form of cards. Cards have their own color, image, and a
link to a page, or script.

7.6 Components 74

 Documentation, Release 5.1.2

The data source for the CARDS component is a list.

Creating a list item

To display the card on the component, one needs to add the element to the list bound to the region.

Create a new element in the list and configure the parameters:

• Name - the name of the item and the displayed title,

• Sequence - numerical order of an element that determines its position,

• CSS icon class - icon for the card,

• Link - link to a page or script when clicking on a card,

• Attribute 1 is an auxiliary inscription,

• Attribute 2 is the RGB color of the card in #ffffffffff format.

Example SQL query to create a dynamic list:

Note: When creating a dynamic list to use as a data source for a Card region, strict column naming as in the above
example is required!

Component customization

Two levels of settings are available for the CARDS component: region parameters and attributes.

Region parameters

For this component, all parameters are standard for the region, except that the data source for the component is a list,
which must be specified in the Data Source - List field.

Attributes of the region

The CARDS component has two special attributes available in the component settings:

7.6 Components 75

 Documentation, Release 5.1.2

Attribute Type Description

Theme List A template that defines the display of cards. There are three options to choose
from:

• Block
• Functional
• Basic

Columns List The number of cards in a row. If there are more items in the list than
 the number indicated here, the cards will be arranged in several rows.
 It accepts a value from one to twelve.

For clarity, the types of templates are shown in the screenshots:

Block

Featured

Basic

X

7.6.5 CHART
CHART is used for graphical representation of numeric data in the form of diagrams. The component supports the
following types of charts:

• Column - vertical

7.6 Components 76

 Documentation, Release 5.1.2

• Column - horizontal

• Ring diagram

• Line chart

• Diagram with areas

The source of data for the component is the results of SQL query.

Example of SQL query:

Component customization

Three levels of settings are available: region parameters, diagram attributes and series parameters. Find below the info
on each group.

Region parameters

A distinctive feature of the region of the Chart type is the mandatory filling in the Data Source - SQL field.

Attributes of the region

A group of special attributes specific to a given type of region.

7.6 Components 77

 Documentation, Release 5.1.2

Attribute Type Description

Chart - Type List Defines the appearance of the diagram. Available options:
 • Bar - vertical
 • Bar - horizontal
 • Ring diagram (donut)
 • Line chart
 • Diagram with areas

Category Column List Determines which of the database request columns contains the value for the
diagram category. The series values must be grouped by category.

Dynamic
load

Switch If set, the diagram will not be built without an explicit call from a dynamic
event. Otherwise, it is loaded when the page is opened.

Width Number Specifies the width of the component.
Height Number Specifies the height of the component.

7.6 Components 78

 Documentation, Release 5.1.2

Series parameters

Parameter Type Description

Name Text Specifies the display name of the series. For the object tree and for display
on the diagram in the application. Since in ring diagram charts there is only one
series, for this type, the series name will only be displayed in the object tree.

Sequence Number Determines the order of the series when output to the interface.
 Since in ring diagram charts there is only one series, only the first series will be

displayed in the application.
Value Column List From the drop-down list, select one of the request columns containing a value
 of numeric type to output the value to the series.
Conditions of List Specifies the type of series display condition. The default is Always.
selection - Type Depending on the type, you will need to specify additional condition parameters.

No additional conditions will be required for Always and Never.
Display Text Query in SQL format. The parameter applies to the following types of conditions:
Conditions - area - Exists (SQL query returns at least one row). If the query returns at least
The first сondition one row, the series will be displayed on the chart.

• NOT Exists (SQL query returns no rows). If the query returns no rows,
the series will be displayed on the chart.

Display Text A logical expression in the SQL language. If the expression returns true,
Conditions - area the series will be displayed on the chart.
SQL expression The parameter is applicable for the SQL Expression condition type.
Display Text / Specifies a list of input parameters for the SQL query in the “First Condition”
Conditions - Builder or “SQL Expression” field. An input parameter must be defined for each
The first input window substitution variable in the query. It can accept values of global variables,

input elements, and page selections. It can be entered as text or selected
in the builder. Applies to condition types:

• Exists (SQL query returns at least one row).
• NOT Exists (SQL query returns no rows).
• SQL Expression

Display Text / Allows you to select an item depending on which
Conditions - Builder value the column will be displayed or not.
Element window Applies to the following types of conditions:

 - Value of Item / Column in Expression 1 Is NOT NULL. The series will be
displayed if the item value is not NULL.

• Value of Item / Column in Expression 1 != Zero. The series will be
displayed if the item value is not equal to 0.

• Value of Item / Column in Expression 1 Is NULL. series will be displayed
if the item value is NULL.

• Value of Item / Column in Expression 1 Is NULL or Zero. The series will
be displayed if the item value is NULL, or zero.

• Value of Item / Column in Expression 1= Zero. The series will be displayed
if the item value is 0.

• Value of Item / Column in Expression 1 Is NOT null and the Item /
Column Is NOT Zero. The series will be displayed if the item value is not
NULL and is not equal to zero.

7.6 Components 79

 Documentation, Release 5.1.2

For clarity, the types of diagrams are shown in the screenshots:

Columnar

Circular

Linear

7.6 Components 80

 Documentation, Release 5.1.2

Diagram with areas

It is possible to set custom data filters by form elements to the chart. To do this, it is necessary to write the correct
condition in the chart data sampling request and pass the necessary parameters that will limit the sampling.

7.6.6 CHAT
CHAT – the region for chat output. The data source for the component is the result of SQL query. Thus, the component
displays the data set obtained as a result of SQL query in the form of a user chat.

In addition to the message text, date and user, the request also includes the position of the text and the design style of
the icon.

Example SQL query:

7.6 Components 81

 Documentation, Release 5.1.2

Component customization

Apart from the need to select and configure the data source, the rest of the component parameters are standard for
the region.

7.6.7 FORM
FORM is a component for creating a variety of user input elements.

Elements of the form

After creation on the region page with FORM type, one can add form elements. Adding elements is performed
through the context menu by right click.

Message text

Message alignment (left, right)

 User Name

Date of shipment
Text in the icon

7.6 Components 82

 Documentation, Release 5.1.2

Basic attributes of the element

Find below the basic attributes that are present regardless of the type of input element.

Attribute Description

Name To identify an element, it is necessary to specify its name. The name must be unique
in the context of a given page. For the correct operation of the application it is
strongly recommended to specify the prefix in the format: PXXX. Where XXX is
the number of the current page. When creating a new input element on the form,
the name will be filled in automatically, with a correctly formed prefix. The name
will also act as the element identifier in HTML.

Type It is necessary to specify the element type. By default, it is set to element type “Text”.
See below for a description of element types.

Data source The data source for this component.
Sequence The field defines the sequence of displaying the input element in this region. An integer

value must be specified. When creating a new element, the field is filled automatically -
increasing the value by 10 from the previous element.

Type Specifies the region to which the input item belongs, you can only select a region with the

FORM type.
Start a new line Indicates the need to move the element to a new line within the region grid.

Number of columns Specifies the number of occupied columns within the region grid.
Name The caption of the item on the page. Displayed only if the item is displayed.
Not empty Determines whether a value needs to be present within the element when processing the

input result. If a value has not been specified, an error message will be sent to the user,
requiring the user to fill in the value for the specified element.

Maximum length Specifies the maximum possible value of the element length in characters. Valid for element
types where keyboard input is expected.

Hint The value for the tooltip that shows the expected values.
continues on the next page

7.6 Components

 Documentation, Release 5.1.2

83

Table 4 - continued from previous page
Description Attribute

Input mask Defines the format for entering information into the field.
Use the following identifiers to format user input:

• 9 - numeric symbol
• a - letter symbol
• *- alphanumeric character

JS Settings Defines additional settings for the input element. See details below.
Default settings Select the default value. The type determines where to take the value from. Available
 values:

• Static - enter a default value that will be displayed if no session value is set for this
item

• SQL – enter the sql expression that will return a value for the item
• Element - the value will be taken from the value of the application element recorded

in the session.

Display conditions Defines the conditions for displaying an element on a form.

Read only Specifies the conditions for outputting an item as ‘read only’.

Element types

The following element types are available for the FORM component:

Attribute Description

Text Element for text input of user information. Additional settings (JS Settings) include
the ability to send the form to the server by pressing Enter.

Text area Element for text input of a multiline value. It has no additional settings.

Select List A selection item from a list of items.
Numeric Element for numeric input. Additional settings include setting

the following parameters:
• Decimal part separator sign.
• The digit separator sign of a number.
• Minimum and maximum value of the number
• Number of decimal places
• Submit a form by pressing Enter

When processing a value entered by the user in this field, it is necessary to
convert the specified value to a numeric value using the to_number function.

Hidden An element that will not be displayed on the form. Used to pass parameters
to the form.

continues on the next page

7.6 Components

Table 5 - continued from previous page
Description

84

 Documentation, Release 5.1.2

Attribute

Date Picker Item to select the date and time type value. Additional settings include:
• Date selection option
• Time selection option
• Minimum and maximum date for selection
• Submit a form by pressing Enter

When processing a value entered by the user in this field, it is necessary to
convert the specified value to the date type using the to_date/ to_timestamp
function.

Radio Group Element for displaying radio buttons. To specify a list of values, use an expression
of type SQL, which will return two columns. The first column will contain the value
of the radio button displayed on the form, the second column will contain the value
passed to the form handler.

Check Boxes Element for selecting values by checkboxes. As for radio buttons it is necessary to
specify a list of values using an SQL expression. Additional settings:

• Separator - defines the format of the delimiter of values that will be transferred to the
database as a string.

• Columns - the number of columns into which the checkbox values will be divided.

Switcher An element to display a value switch. Works the same way as radio buttons,
the difference is the visual design. As well as for radio buttons it is necessary to
specify the list of values using SQL expression. There are no additional settings.

Autocomplete List type element with autocomplete option. When entering a value will search
through the available values in the list, filtering the result of possible values.
To fill the element the end user needs to select a value from the filtered list.
As well as for radio buttons it is necessary to set a list of values using SQL
expression. There are no additional settings.

Password Element for entering a password. The entered characters are automatically replaced
by the * sign, at the user's request the information can be displayed by pressing the
button next to the item.

WYSIWYG The element is displayed as a WYSIWYG editor
File input Element for uploading custom files. The element settings specify:

• Block height - defines the height of the drag and drop area.
• Mime types - sets a limit on the types of files that can be loaded. File types

must be specified as mime-type separated by commas. If the value "any"
is specified, the type restriction is removed.

• Hint text - sets the hint text for the user
• Max. file size - defines the maximum allowable file size
• Max. number of files - defines the maximum number of files. To process

uploaded files, XRAD creates a temporary table in the pg_temp schema using
the following expression: CREATE TEMP TABLE IF NOT EXISTS
pg_temp.xrad_files (name text, file_name text, file_mime text, file_content
bytea). The name column will contain the value from the file input element
passed to the server. If multiple files are uploaded, the value of the element will
be passed as a string with the values separated by a colon (:).

continues on the next page

7.6 Components

Table 5 - continued from previous page
Description

85

 Documentation, Release 5.1.2

Attribute

7.6.8 HTML code (HTML)
HTML – is a region for displaying HTML code. This type of region is used to display text, images, videos and any
other HTML code elements.

A

The component supports two types of data source:

• Static - HTML code is specified directly in the HTML code parameter.

• SQL - HTML code will be obtained as a result of SQL query execution.

Component customization

Apart from the need to select a source, the rest of the component parameters are standard for the region.

7.6.9 PAGE NAVIGATION
PAGE NAVIGATION is a component for placing a navigation panel on a page. The data source is a list whose
elements will be displayed with an icon, title, link and description.

Example of SQL code to create a dynamic list:

Multiselect A list of items with multiple values to choose from.

7.6 Components 86

 Documentation, Release 5.1.2

Note: When creating a dynamic list to use it as a data source for the Page Navigation region, strict column naming is
required as in the above example!

Component customization

Apart from the need to specify the source list, the other component parameters are standard for the region.

7.6.10 REPORT
REPORT is a component for outputting data in the form of a table. The output data is generated as a result of SQL-
query.

The parameters of the REPORT component allow to:

• set the number of lines to be displayed

• add pagination

• show/hide column headers

• add a data set search field

• set the message to be displayed when there are no rows in the sample.

The report column settings allow to:
• change the type from text to link, set an icon for the link

• add a sorting option

• include the column in the searchable list

• output mask

• set the width, alignment, and other display settings.

It is possible to set custom data filters for the report by form elements. To do this, one needs to write the correct
condition in the report data selection request and pass the necessary parameters that will limit the selection.

Component customization

There are three levels of settings available: region settings, report attributes and report column settings. Find more info
on each group below.

Region parameters

The distinctive feature of the component of the ‘Report’ type is the mandatory filling in the Data Source - SQL field. It
is necessary to specify the SQL-query, based on which the list of report columns is formed and the data for output to the
form is selected.

7.6 Components 87

 Documentation, Release 5.1.2

Attributes of the region

A group of special attributes specific to a given type of region.

Attribute Type Description

Enable search Switch Adds a report search element. A text input field and a drop-down list
 with the ability to select report columns to search by them.

Enable Switch Adds pagination - the ability to view pages beyond the first page.
pagination

Enable Switch Adds headings to the report columns.
headers
Template List Specifies the basic report template. There are currently two template options:

• Standard
• Column - value

String Number Sets the number of report lines per pagination page.
limitation
Message about Text Allows you to specify the text that will be displayed on the screen
missing area if the database query did not return any data.
data.
Report templates Window Allows you to select a report template as the default template. By clicking

settings opens a window with a list of report templates. A template is generated each
time the user sets a new selection filter, sorting or highlighting. The
developer can select one of these templates as the default template, after
which this report view will be opened to all users.

Между Enable headers и Template добавить (англ не трогать – тех. наименования):
• Attribute: Enable actions
• Type: Switch
• Description: Добавляет кнопку "Действия" с дополнительным пользовательским

функционалом в виде фильтрации, highlighting и управления колонками.
Column parameters

The generated list of columns will be displayed in the object tree immediately after successful validation of the query
in the SQL Data Source field. Each column is an independent object with individual parameters. The table lists the full
set of parameters of the report column component.

continues on the next page

Parameter
Column name

Type
Text
(
only

Description
Column Name. Defined by the data source query column alias. The field is not
editable in the parameter settings - it always corresponds to the column name in
the query. The column value is referenced by this field.

7.6 Components 88

 Documentation, Release 5.1.2

Type

Table 6 - continued from previous page
Type Description

 Defines a set of column parameters and its behavior when displayed on the
page. It can take the following values:

Text. Simple output of the value of information from the database.
Link. Allows clicking on an element within a cell of a column to redirect
the user to another page or to call a dynamic script.
Hidden. The report column will be hidden in the user interface. Its value
(e.g. to be passed to the reference parameters) will still be available
Checkbox. The column is a group of checkboxes for multiple selection of
report values.

Associated Text / Allows you to select an input element or enter a global variable, where
values from cells of checkboxed rows will be transferred. The parameter
is applicable for column type - Checkbox.

Item Builder -
 window

Heading Text The column header to display in the user interface on the application
page.

Sequence number Defines the order of columns when output to the interface. By default it
is equal to the order of columns in the query at the first generation. When
adding a column to the query later, the new column will be assigned the
last number, regardless of its position in the query.

Alignment Switch Alignment of the column content text. Left edge, centered, or
on the right edge.

Link Text / Allows you to specify a link to another page, call a dynamic script, or
customize in the builder a link to a page within the application. In the
latter case, you can select values not only for input fields, but also for
report columns. Instead of the link text, you can also pass the value of
the report string - this approach allows you to customize the link inside a
sql query. The parameter is applicable for Column Type - Reference.

 Builder
con- window

Link icon Text Allows you to select an icon to display in a column cell. You can also pass a
report string value instead of the link text - this approach allows you to select
the picture inside a sql query. The parameter is applicable for Column Type -
Reference.

Width Text Fixes the width of the column.
Format mask Text Formats the output by overlaying a mask according to the formatting rules

of the to_char SQL function.
Enable sort Switch Allows rows to be sorted by column value.

Column Switch Enables searching by column value if searching is enabled in the
search report attributes.
HTML Text Allows you to define the output format as HTML. You can refer to
Expression area the value of the report column.
Display Condi- List Specifies the type of the report column display condition. The default is

Always. Depending on the type, you will need to specify additional
condition parameters. For Always and Never, no additional conditions
will be required.

tions - Type

continues on the next page

7.6 Components 89

 Documentation, Release 5.1.2

Table 6 - continued from previous page

Parameter Type Description

Display Condi Text Query in SQL format. The parameter is applicable for the following
tions - First area types of conditions:
condition • Exists (SQL query returns at least one row). If the query returned at least
 one row, the column will be displayed in the report

• NOT Exists (SQL query returns no rows). If the query returns no rows,
the column will be displayed in the report.

Display Condi- Text Logical expression in SQL language. If the expression returns true, the column
tions - SQL area will be displayed in the report. The parameter applies to the condition type
Expression SQL Expression.
Display Condi- Text / Specifies a list of input parameters for the SQL query in the “First Condition”
tions - The first Builder or “SQL Expression” field. An input parameter must be defined
input window for each substitution variable in the query. Can accept values of global

variables, input elements, and page selections. Can be entered as text or
selected in the builder. Applies to condition types:

• Exists (SQL query returns at least one row).
• NOT Exists (SQL query returns no rows).
• SQL Expression.

Display Condi- Text / Allows you to select an item depending on whose value the column will be
tions - Element Builder displayed or not. Applies to the following types of conditions:

window - Value of Item / Column in Expression 1 Is NOT NULL. The column will
be displayed if the item value is not NULL.

• Value of Item / Column in Expression 1 != Zero. The column will be if the
item value is not 0.

• Value of Item / Column in Expression 1 Is NULL. The column will be if
the item value is NULL.

• Value of Item / Column in Expression 1 Is NULL or Zero. The column
will be displayed if the item value is NULL or zero.

• Value of Item / Column in Expression 1= Zero. The column will be
displayed if the value of item is 0.

• Value of Item / Column in Expression 1 Is NOT null and the Item /
Column Is NOT Zero. The column will be displayed if the item value is not
NULL and is not equal to zero.

7.6.11 TABS
TABS is a container for grouping child regions on switchable tabs. After creating a component with the TABS type on
the page, one needs to add child regions using the context menu. Each child region is displayed as a tab.

The tabs will display child region headers, even if the header is disabled for the regions themselves.

7.6 Components 90

 Documentation, Release 5.1.2

Component settings

Component parameters are standard for the region.

7.6.12 TREE
TREE -a region for displaying the tree structure of data. SQL query is used as a data source.

An example SQL query for the TREE component:

Component settings

Two levels of settings are available: region parameters and tree attributes.

Region parameters

The component parameters are standard for the region.

Attributes of the region

Attribute Type Description

Node ID column List Node identifier. Select one of the query columns from the drop-down list.

Parent Key column List Identifier of the parent node. Select one of the query columns from the

drop-down list.
Node label List The displayed title of the node. You must select one of the query columns

from the drop-down list. column
Link Text / The link where the redirection will be made after clicking on a tree node.

Builder
window

Link column- List Specifies the column containing the link to jump to.

Element ID
ID of the parent element

Signature of the element

The redirect link after clicking on the element

7.6 Components 91

 Documentation, Release 5.1.2

7.6.13 WIZARD
WIZARD is a component for graphical representation of a sequence of actions based on a list. The component
supports two types of orientation:

Horizontal

Vertical

Component customization

Two levels of customization are available: region parameters and wizard attributes.

Region parameters

Component parameters are standard for the region.

Attributes of the region

Attribute Type Description

Clickable Switch Determines whether the linked page will be navigated to by a click on the
 wizard node.
Step labels List Several options are available for displaying wizard step headers:

 - All. The headers of each item in the list will be displayed on the wizard
• Current. Only the header of the current step will be displayed on the

wizard, the rest will be unnamed.
• Never. No headers will be displayed on the wizard.

Orientation List The spatial orientation of the wizard. There are two options to choose
from:

• Horizontal
• Vertical

7.6 Components 92

 Documentation, Release 5.1.2

7.6.14 CALENDAR
CALENDAR is a component for displaying the data with start and end time stamp of an event in the form of an
interactive calendar. The source of data for the component is the result of SQL query.

Example SQL query

The calendar itself can be customized by changing the display of weekends, selecting the views to be displayed (Week,
Month, Year, Agenda), as well as the calendar height and the display of a hint about the event when hovering the cursor.
One can set a color to the calendar event, as well as add the redirect link (the id of the record can be added to the link).

Component customization

Two levels of customization are available: region settings and calendar attributes.

Region parameters

Component parameters are standard for the region.

ID of the string to add to the link
Event title

Start of event period

End of event period

HEX color code

7.6 Components 93

 Documentation, Release 5.1.2

Attributes of the region

Attribute Type Description

Display Column
tan-

List You can assign one of the SQL data source columns as the title of the event
displayed on the calendar.

Start date Сolumn List You can assign one of the SQL data source columns as the start time of the
event displayed on the calendar

End date Column List You can assign one of the SQL data source columns as the end time of the
event displayed on the calendar.

CSS column List One of the SQL data source columns can be assigned to define the style of
event to be displayed on the calendar.

Height number The size of the component vertically.

Views Multiple
choice

List of available calendar view levels. The selected options will be offered
to the user in the component interface. List of views:

• Year
• Month
• Week
• Day
• Agenda

Show Switch If set, not only the date but also the time of the event will be displayed.
Time
Show Switch If set, the name of the event will be displayed on a tooltip.
Tooltip When you hover over a cell in the calendar.
Show Switch If set, all days of the week will be displayed.
Weekends
View Link Text / Defines the link to which the user will be redirected when clicking on an

event in the calendar. Builder
 window

7.6.15 DATAGRID
DATAGRID is a table with data similar to REPORT, but with the ability to edit data. Records in DATAGRID can be
added, modified and deleted.

In addition, in DATAGRID you can change the sequence of columns by simply dragging the column header to the
desired location. Also, existing rows can be duplicated.

7.6 Components 94

 Documentation, Release 5.1.2

Component customization

Two levels of settings are available: region parameters and table attributes.

Region parameters

Component parameters are standard for the region.

Attributes of the region

Attribute Type Description

Editing Switch- Specifies whether the contents of the datagrid can be edited.
- enabled
Allowed Multiple- List of available operations in the table:
operations choice • Insert

 • Update
• Deletion

The setting of allowed operations is available if editing is enabled.

Lost List This attribute specifies the way in which data loss is prevented during the
Update type multiple users working together with the same data set. Available values:

• String value.
Before sending the changes, the system calculates the hash of the changed string
and compares it with the hash obtained when loading the data. If the hashes are
different, the system will not allow the update (someone else has already changed
the string).

Authorization on List Specifies which user authorization scheme is used to allow
editing to the selected operation in the component.
Show NULL Text Specifies what will be displayed in the table cell if there is no value (Null).
values as
Show - Switch- Specifies the display of the component's toolbar.
Toolbar

Toolbar - Multiple- Defines a set of buttons on the toolbar, if its display is enabled.
Controls choice The following toolbar components are available:
 • Search columns

• Search field
• Actions
• Save

Templates Text / Allows you to specify a default template.
Builder
window

7.6 Components 95

 Documentation, Release 5.1.2

7.6.16 TILES
TILES is used to display statistical information. The source of data for the TILES component is the result of SQL
query. To customize the appearance of tiles, certain SQL query parameters are used, for example:

Component customization

Two levels of settings are available: region parameters and table attributes.

Region parameters

The distinctive feature of the component of the “Tiles” type is the mandatory filling in the Source - SQL field. It is
necessary to specify the SQL query, based on which the list and appearance of tiles are formed.

'Profit'

-- Main caption (title)
-- A caption describing the title

-- HEX code for tile design color

-- Subsidiary caption below the main text

-- CSS icon class

97 7.7 Working with lists

 Documentation, Release 5.1.2

Attributes of the region

Attribute Type Description

Theme List Specifies a predefined theme for displaying tiles:
• Classic - displays tiles with the icon on top. The color setting in this

variant determines the color of the icon.
• Contrast - similar to classic, but the color setting determines the

background color of the tile.
• Horizontal - compact display with the icon on the left. The color setting

determines the color of the icon.
• Horizontal-contrast - a compact display where the color setting determines

the background of the tile

Columns List Specifies the grid settings for displaying the component. When specified
parameter "auto" the component will distribute all elements into rows by itself.
The width of each element in the row will be the same. Parameter
"auto-float" works the same as "auto”, but the width of each element will match
the content of the component.

View List Defines the appearance of the component.
• A grid is a flat display with no gaps between tiles.
• Spaced - display tiles with gaps and shadows

Align Switch Specifies the type of alignment of the content in the tile:
 • Left align

• Centered
• Right align

Contrast Switch Specifies the contrast mode of the display. In contrast mode,
Icons icons are displayed in white on a colored background.
Title column List Specifies the name of the parameter to display the tile header.

Text column List Defines the name of the parameter for displaying the main text
 of the tile.
Description List Specifies the name of the parameter for displaying additional tile text.
column
Icon column List Specifies the name of the parameter to display the tile icon.

Color column List Specifies the name of the parameter to control the tile color.
 It is necessary to specify the color value in hex format.

Several different themes are implemented for the tiles, similar to the CARDS component. You can also select different
alignment options for the text within a tile: left, right and center. In addition to tile display themes, there are also two
types of tile layout: as a solid grid of elements and as individual elements. For clarity, the possible options are shown in
the screenshots:

98 7.7 Working with lists

 Documentation, Release 5.1.2

Classic 3 column theme with spaced tiles

Contrast theme in 2 columns with center alignment

Horizontal 1-column theme with right alignment

99 7.7 Working with lists

 Documentation, Release 5.1.2

Horizontal-contrast theme with contrasting icons

7.7 Working with lists
Such elements as menus, path to the current page (breadcrumb), navigation bars, etc. are often used in the applications
being developed. To display information in them, you can use both a dynamically generated set of values (using SQL
query) and a static - strictly defined list.

7.7.1 What is a list
A list is a set of data of the same type.

There are 3 types of lists in XRAD:

1. Static - the list is created and edited by the developer in the XRAD environment.

2. Dynamic (Based on Query) - the list is created based on an SQL query. It can be changed by the user through
the web application interface.

3. Breadcrumb is a special type designed to output the path to an application page.

7.7.2 Creating, editing, deleting lists
To create a list, select the "Lists" section in the main menu and press the "+" button in the submenu. Also, to create or
delete a list, you can use the context menu by right clicking on the area where the lists are shown and selecting the
appropriate action.

The creation of a new list takes place in a pop-up window where one needs to specify:

• Name is a mandatory attribute that defines the name of the list.

• Data source is a mandatory attribute that defines the database for storing the list.

• List Type - Static, Based on Query, Breadcrumb.

100 7.7 Working with lists

 Documentation, Release 5.1.2

When creating a dynamic list (Based on Query), one must specify the SQL query on the basis of which the list will be
built and, if necessary, the variables that are used in the query.

After clicking the "Save" button, a new list will be created to which you can add list items.

101 7.7 Working with lists

 Documentation, Release 5.1.2

7.7.3 Creating list items
To create list items, one needs to right-click to call the context menu and select "Create list item".

In a new tab, fill in the attributes of the new list item.

Parent item - parent item of the list. It is intended for formation of multilevel menu.

• Name is a mandatory attribute that defines the name of the list item.

• Data Source is a mandatory attribute that defines the source of the data.

• Order number is a mandatory attribute that determines the order in which the element is displayed in the list.

• Css icon class - defines the icon to be displayed.

• Tooltip - defines the text tooltip of the element.

• Active for pages - list of page numbers on which this list item will be highlighted as active.

• Separated - Inserts a separator between items if the list is used to form a navigation menu at the top of the page.

7.8 User management

 Documentation, Release 5.1.2

101

• Link - actions that will be performed when selecting a list item

• Condition type - defines the type of condition that must be met to follow the link.

Attributes 1, 2 - for some output options one can also use additional list attributes. For example, for Page Navigation
component in Attribute 1 one can specify what will be displayed under the item name, and in Attribute 2 - what will be
displayed in the right part of the item.

7.8 User management
XRAD provides the ability to manage users directly in the development environment. Internal users of the development
environment are authenticated by login and password (CUSTOM scheme); or are matched by name with external users
who are authenticated according to the chosen scheme. For example, a user named DEVELOPER can log in with a
username and password, or can be matched with a DEVELOPER user from Active Directory or OIDC. Internal XRAD
users have a role that defines access rights. The processes for creating and editing users are minimalistic but have all
the necessary functionality. Three main roles are defined, which can be used to differentiate access zones for users:

• ADMIN is an administrator role. The ADMIN has full rights, so special care should be taken when granting this
role. A user with this role can edit, create and delete other users. The ADMIN has the right to create another user
with the ADMIN role. This role should be assigned strictly to an administrator, the DEVELOPER role is
sufficient for developers.

• DEVELOPER is a developer role. The DEVELOPER can view and modify Pages, create and delete them. The
DEVELOPER has the right to edit Lists and Settings, and has the right to view Users, but does not have the right
to change them (including their own user). This role is suitable for developers, as the user with this role has access
to all tools except User management.

• VIEW is a role with a minimum set of privileges. The VIEW users can view Pages and their contents, as well as
Lists and Settings (but not their contents!). Users with this role cannot view Users and cannot create Pages, neither
change their user settings. This role fits for the users who want to familiarize themselves with XRAD.

7.8.1 Creating, editing, deleting users
To create a user, select the "Users" section in the main menu and press the "+" button in the submenu. Also, to create or
delete a user, you can call the context menu by right clicking on the area where the users are listed and select the
appropriate action.

After filling in or editing the parameters of the selected account, confirm the changes by pressing the "Save" button.

 Documentation, Release 5.1.2

7.9 Styles and themes 102

Parameter Description

Username A mandatory attribute specifying the name of the user to be created, used
as a login.

Email A mandatory attribute that specifies the user's e-mail address.
First name,
Last name

Attributes for entering the first and last names of the user.

Role A mandatory attribute that defines one of the possible user roles.
Locked A flag that specifies whether the user is locked out of the system.

It is mandatory to specify and confirm the user password, and one can also check the "Require password change" flag
if it is necessary to change the password after the initial login. Note: when editing user parameters, changing the
‘Username’ field is not available.

7.9 Styles and themes
A developer can control the standard styles through custom CSS properties.

You can connect your CSS properties in two ways:

1. In the XRAD development environment, in the page settings section, add CSS properties to the "Embedded
CSS" field (as local properties).

2. Add CSS between the <head></head> tags in the index.html file of the PGHS web controller (as global
properties).

Global custom PGHS properties are applied to the pseudo-class: root, local (within a page) properties are applied to
the class. page-{ID}, where {ID} is the page identifier.

Attention

Specify only those variables that need to be overridden. The default values are already defined. There is no need to copy
the entire example to the page

If only the primary color is to be overridden, it is sufficient to specify the value -color-primary.

A list of PGHS custom CSS properties and an example of usage:

(continued on next page)

--color-danger: #f42525; /* "Error" status color (field highlighting, tooltips) */

,→

/* Color of the "warning" status (tooltips) */

/* Color of "success" status (tooltips) */
Status color "informing" (tooltips)

--color-link: #1f78ff; link color, inherited from --color-primary */

--global-bg-color: #f9fafb; /* Page background color */

 Documentation, Release 5.1.2

7.9 Styles and themes 103

(continued from previous page)

/* Buttons */

--btn-radius: 8px; /* Button rounding */

--btn-lg-radius: 12px; /* Button rounding with modifier btn-lg (large) */

--btn-sm-radius: 6px; /* Button rounding with modifier btn-sm (small) */

--btn-xs-radius: 6px; /* Button rounding with modifier btn-xs (extra small) */

/* .btn */

--btn-color: transparent; /* Button background color .btn (standard - without modifier)␣

,→ colors) */

--btn-border-color: #eaeaea; /* Background color of the .btn button (standard - without
modifier␣

,→ colors) */
--btn-text-color: #333; /* Button text color .btn (standard - no modifier␣

,→ colors) */
/* .btn-primary */

--btn-primary-color: #1f78ff; /* Button background color .btn-primary, inherited from --
,→ color-primary */

--btn-primary-text-color: #fff; /* Button text color .btn-primary */
/* .btn-secondary */

--btn-secondary-color: #f3f3f4; /* Background color of .btn-secondary button */
--btn-secondary-text-color: #1f78ff; /* Button text color .btn-secondary,␣

,→ inherited from --color-primary */
/* .btn-success */

--btn-success-color: #15c283; /* Background color of button .btn-success, inherited from
--

,→ color-success */
--btn-success-text-color: #fff; /* .btn-success button text color */
/* .btn-danger */

--btn-danger-color: #f42525; /* Background color of .btn-danger button, inherited from -
-

,→ color-danger */
--btn-danger-text-color: #fff; /* .btn-danger button text color */
/* .btn-warning */

--btn-warning-color: #ffb800; /* Button background color .btn-warning, inherited from --
,→ color-warning */

--btn-warning-text-color: #333; /* .btn-warning button text color */
/* .btn-info */

--btn-info-color: #17a2b8; /* Background color of button .btn-info, inherited from --
color-info */
--btn-info-text-color: #fff; /* .btn-info button text color */

/*Load Indicator*/

--loader-color: #1f78ff; /* Loading indicator color --color-info, inherited from -
,→ -color-primary */

--loader-width: 80px;
--loader-width-sm: 1rem; /* Loading indicator size .spinner-border-sm */

/* Fonts */

--font-family: "Noto Sans", sans-serif; /* Name, font family */

/* Typography */

--text-title-color: #333; /* Standard title color */
--text-color: #333; /* Standard text color */
--text-font-size: 15px; /* Standard text size */

--text-font-weight: 400; /* Standard text boldness */

(continued on next page)

 Documentation, Release 5.1.2

7.9 Styles and themes 104

(continued from previous page)

/* Page scrolling */

--scroll-color: #bfbfbf; /* Scroll indicator color */
--scroll-bg-color: transparent; /* Scroll indicator background color */

/* Grid */

--region-grid-col-gap: 12px; /* Indents between columns (col) */

--regions-grid-row-gap: 12px; /* Indents between rows */

/* Page */

--page-position-border: 1px solid #eaeaea; /* border (separator line) between the␣

,→ page positions: sidebar navigation menu), top, left, right, body (center), footer */
--resizer-hover-color: #1f78ff; /* Color of resizer (width control␣

,→ block) when hovering */

/* sidebar */

--sidebar-width: 250px; /* Width of sidebar (navigation menu) */

--sidebar-border: 1px solid #eaeaea; /* border (separator line) sidebar␣

,→ (navigation menu), inherited from --page-position-border */
--sidebar-bg: #fff; /* Background color of sidebar (navigation menu) */
--sidebar-text-color: #4b5667; /* Sidebar (navigation menu) text color */
--sidebar-font-size: 12px; /* Sidebar (navigation menu) font size */

--sidebar-active-bg: #f6f7f9; /* Background color of the active menu item in the
sidebar(navigation menu) */
--sidebar-active-border-color: #1f78ff; /* Background color of the border on the right of
the active menu item in the sidebar (navigation menu), inherited from --color-
primary*/
--sidebar-active-bg-radius: 4px; /* Rounding the active menu item in the sidebar␣

,→ (navigation menu) */

--sidebar-icon-color: #4b5667; /* Color of menu item icons in sidebar␣

,→ (navigation menu), inherited from --sidebar-text-color */
--sidebar-drp-icon-color: #88888888; /* Child open/close icon color␣

,→ menu item elements in the sidebar (navigation menu) */

/* left

--page-left-position-width: 250px; /* Left position width, inherited from --

,→ sidebar-width */

--page-left-position-padding: 8px; /* Internal left position offset */

--page-left-position-border: 1px solid #eaeaea; /* border (separator line)␣

,→ position-left, inherited from --page-position-border */
--page-left-position-bg-color: #fff; /* Background color of the left position */

/* body (center) */

--page-body-position-padding: 8px; /* Internal offset of body position (center) */

/* right */

--page-right-position-width: 250px; /* Right position width, inherited␣

,→ from --sidebar-width */

--page-right-position-padding: 8px; /* Internal offset of position right */

--page-right-position-border: 1px solid #eaeaea; /* border (separator line)␣

,→ position-right, inherited from --page-position-border */
--page-right-position-bg-color: #fff; /* Background color of the right position */

(continued on next page)

 Documentation, Release 5.1.2

7.9 Styles and themes 105

(continued from previous page)

/* top */

--page-top-position-padding: 8px; /* Internal offset of top position */

--page-top-position-border: 1px solid #eaeaea; /* border (separator line)␣

,→ top position, inherited from --page-position-border */
--page-top-position-bg-color: #fff; /* Background color of the top position */

/* footer */

--page-footer-position-padding: 8px; /* Internal footer position offset */

--page-footer-position-border: 1px solid #eaeaea; /* border (separator line)␣

,→ footer (bottom) position, inherited from --page-position-border */
--page-footer-position-bg-color: transparent; /* Background color of footer position (bottom)␣

, */→

/* header for page types: Standard, minimalist */

--header-bg-color: #1f78ff; /* Header header) background color, inherited from --color-
,→ primary */

--header-text-color: #fff; /* Header text color */
--header-height: 48px; /* Header height */
--header-menu-btn-border-color: transparent; /* Navigation button stroke color␣

,→ menu */

--header-controls-border-width: 1px; /* Navigation menu button border size␣
, */→

--header-menu-btn-bg-color: rgba(

0,

0,

0,

0.1

); /* Navigation menu button background color */

--header-controls-radius: 6px; /* Navigation menu button rounding */

--app-logo-text-font-size: 15px; /* Application name font size */

--app-logo-text-font-weight: 600; /* Boldness of the application name font */

--app-logo-text-line-height: 20px; /* App-logo-text-line-height */

--app-logo-display: none; /* (none / block) Display logo (to the right of the button␣

,→ navigation menu) */

--app-logo-url: none; /* (none / url("/files/images/my_logo.svg")) Picture␣

,→ logo (to the right of the navigation menu button), applied as background-image */

--app-logo-size: 32px; /* Logo size (to the right of the navigation menu button),␣

,→ is applied as background-size */

--app-logo-position-top: 0; /* Logo indentation (to the right of the navigation button␣

,→ menu) on top, applied as background-position (top) */

--app-logo-position-left: 0; /* Indent the logo (to the right of the navigation button␣

,→ menu) left, applied as background-position (left) */

--navbar-icon-radius: 6px; /* Navigation menu icon block rounding */

--navbar-icon-bg-color: rgba(

0,

0,

0,

0.1

); /* Background color of the navigation menu icon */

--navbar-icon-color: #fff; /* Navigation menu icon color, inherited from --
,→ header-text-color */

(continued on next page)

 Documentation, Release 5.1.2

7.9 Styles and themes 106

(continued from previous page)
--navbar-icon-order: 3; /* Display order (flex order) for the icon␣

,→ navigation menu */

--navbar-icon-margin: 0 0 0 0 0 8px; /* External indentation of navigation menu icon */

--navbar-text-order: 2; /* Display order (flex order) for item text␣

,→ navigation menu */

--navbar-arrow-order: 1; /* Display order (flex order) for the item icon␣

,→ drop-down list of the navigation menu (down arrow) */

/* Regions */

--region-bg-color: #fff; /* Region background color */
--region-border-color: #eaeaea; /* Region stroke color */
--region-border-width: 1px; /* Region-border-width */
--region-box-shadow: 0px 4px 7px 0px 0px rgba(0, 0, 0, 0, .02); /* Region shadow */

--region-padding: 12px; /* Internal region indents */

--region-radius: 12px; /* Region rounding */

--region-head-separated-gap: 12px; /* Indent the bottom of the separated header␣

,→ region (in region settings), inherited from --region-padding */

/* Modal windows */

--modal-box-shadow: 0px 18px 30px 0px 0px rgba(51, 51, 51, 51, 0.64); /* Modal shadow␣

,→ windows */

--modal-radius: 20px; /* Modal window rounding */

--modal-controls-btn-icon-color: #888888; /* Icon color in the modal header, right side␣

,→ from the header (close button) */

/* Form Elements (ITEMS) */

--item-placeholder-color: #888; /* Label color */
--item-text-color: #333; /* Text color, inherited from --text-color */
--item-border-radius: 8px; /* Rounding */
--item-box-shadow: 0px 2px 5px 0px 0px rgba(85, 114, 157, 0.11) inset; /* Shadow */

--item-border-color: #e4e5e7; /* Color of stroke */
--item-focus-color: #1f78ff; /* Color of the stroke in the :focus state, inherited from
--

,→ color-primary */
--item-error-color: #f42525; /* Error state stroke color and text color␣

,→ errors-under-field, inherited from --color-danger */
--disabled-items-bg-color: #f9fafb; /* Background color in :disabled state,␣

,→ :readonly */
--disabled-items-text-color: #aaa; /* Text color in :disabled, :readonly state␣

, */→
--item-control-inside-icon-color: #aaaaaa; /* Icon color inside the element (tooltip,␣

,→ selector arrow, etc.)*/.

/* Checkboxes */

--checkbox-border-color: #eaeaea; /* Checkbox stroke color */
--checkbox-checked-bg-color: #1f78ff; /* Background color of the selected checkbox */
--checkbox-icon-color: #fff; /* Color of the selected checkbox icon */
--checkbox-radius: 4px; /* Checkbox rounding */

/* Radio buttons */

--radio-border-color: #eaeaea; /* Radio button stroke color */
--radio-checked-bg-color: #1f78ff; /* Background color of the selected radio button */
--radio-icon-color: #fff; /* Color of the selected radio button icon */

(continued on next page)

 Documentation, Release 5.1.2

7.9 Styles and themes 107

--radio-radius: 100%; /* Radio button rounding */

(continued from previous page)

/* Switch (switcher) */

--switcher-bg-color: #f3f3f4; /* Switch background color*/
--switcher-separator-color: #d9dfe8; /* Separator background color (when no item is
selected) */
--switcher-radius: 6px; /* Switcher rounding */
--switcher-btn-radius: 4px; /* Switch button rounding */

--switcher-btn-active-bg-color: #fff; /* Background color */
--switcher-btn-active-box-shadow: 0px 2px 8px 0px 0px rgba(0, 0, 0, , 0.08); /* */

--switcher-btn-text-color: #333; /* button text color, inherited␣

,→ from --text-color */
--switcher-active-btn-text-color: #333; /* The text color of the toggle button in the␣

,→ active state, inherits from --text-color */
--switcher-lg-radius: 8px; /* Switcher rounding (in the absence of a label) */

--switcher-lg-btn-radius: 6px; /* Switch button rounding (if no label) */

/* Dropdown (dropdown list, control) */

--dropdown-bg-color: #fff; /* Background color */
--dropdown-border-color: #eaeaea; /* Color of the stroke */
--dropdown-radius: 8px; /* Rounding */

--dropdown-box-shadow: 0px 3px 6px 0px rgba(0, 0, 0, 0.05), 0px 11px 11px 0px

rgba(0, 0, 0, 0.04), 0px 25px 15px 0px rgba(0, 0, 0, 0.03); /* Shadow */

--dropdown-active-bg: #f6f7f9; /* Background color of the active menu item */
--dropdown-active-border-color: #1f78ff; /* The background color of the border on the
right side of the active menu item, inherited from --color-primary */
--dropdown-active-bg-radius: 4px; /* Rounding of the active menu item */

/* Calendar (ITEM type DATE) */

--datepicker-days-text-color: #aaa; /* */
--datepicker-days-text-color: #333; /* , inherited from --text-color */
--datepicker-active-bg-color: #1f78ff; /* Background color of active date, inherited␣

,→ from --color-primary */
--datepicker-active-text-color: #fff; /* Active date text color */
--datepicker-hover-bg-color: rgba(

45,
52,
62,

0.06

); /* Background color of hover date */

/* Field File */

--item-file-radius: 10px; /* Rounding */

--item-file-border-color: #888; /* Color of stroke */
--item-file-placeholder-color: #888; /* Text color in the drag zone␣

,→ (dropzone) */
--item-file-msg-color: #888; /* Explanatory message text color below the field */

/* Tabs (TABS) */

--tabs-padding: 0 12px 0 12px; /* Internal tab block indentation */

--tab-padding: 12px 0 12px 0; /* Inner indentation of tab-switch button */

(continued on next page)

 Documentation, Release 5.1.2

7.9 Styles and themes 108

(continued from previous page)
--tabs-gap: 24px; /* Spacing between radio buttons */

--tabs-border-width: 1px; /* Tab block border width, inherited from --region-

,→ border-width */

--tabs-border-color: #eaeaea; /* Tab block border color, inherited from --
,→ region-border-color */

--tabs-color-border-active: #2d343e; /* Active tab border color */
--tabs-color-text: #888; /* Switch buttons text color */
--tabs-color-text-active: #333; /* Active toggle button text color */

/* Cards (CARDS) */

--cards-radius: 12px; /* Rounding, inherited from --region-radius */

--cards-border-color: #eaeaea; /* Border color, inherited from --region-border-
,→ color */

--cards-border-width: 1px; /* Border width, inherited from --region-border-

,→ width*/

--cards-box-shadow: 0px 4px 7px 0px 0px rgba(0, 0, 0, 0, .02); /* Shadow, inherited from --

,→ region-box-shadow*/

--cards-bg-color: #fff; /* Background color */

/* Report (REPORT) */

--report-th-text-color: #888; /* Text color of <th> cells in <thead> */
--report-th-font-size: 14px; /* Font size of cells< th> to< thead> */

--report-th-line-height: 16px; /* Cell line height< th> to< thead> */

--report-th-font-weight: 400; /* Boldness of cell font< th> to< thead */>

--report-td-text-color: #333; /* Text color of <td> cells in <tbody> , inherited from␣

,→ --text-color */
--report-td-font-size: 14px; /* Font size of td<> cells in tbody<> */

--report-td-line-height: 16px; /* Cell line-height td<> to tbody<> */

--report-td-font-weight: 400; /* Boldness of cell font td<> to tbody */<>

--report-cellpadding: 8px 12px; /* Internal cell indents */

--report-border-width: 1px; /* Border-width */

--report-border-color: #d9dfe8; /* Border color */
--report-stripe-bg-color: #f9fafb; /* Background color of even-numbered lines */
--report-acs-desc-active-color: #333; /* Active sort icon color,␣

,→ inherits from --report-td-text-color */
--report-hover-bg: #d8e7ee; /* Background color of line on hover */
--report-pagination-text-color: #888; /* Pagination text color */
--report-pagination-button-color: #1f78ff; /* Pagination button color, inherited␣

,→ from --color-primary */
--report-pagination-font-size: 14px; /* Pagination font size*/

--report-pagination-line-height: 16px; /* Pagination-line-height */

--report-footer-padding: 8px 12px; /* Internal pagination block indentation,␣

,→ inherits from --report-cellpadding */

--report-header-padding: 12px; /* Internal indentation of top block with search and␣

,→ filters, inherited from --region-padding */

/* Step-by-step navigation (WIZARD) */

--wizard-unactive-bg-color: #d9dfe8; /* Background color of inactive/unfinished␣

,→ states */
--wizard-active-bg-color: #1f78ff; /* Background color of active/complete␣

,→ states, inherited from --color-primary */
--wizard-step-label-color: #333; /* Label text color, inherited from --text-

(continued on next page)

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

109

7.10 jsAPI reference guide
The jsAPI object serves as a tool for interacting the client side of the application with the server and the PGHS frontend,
and aims to simplify the development of the visual interface of the application, provides ready-made DOM tools,
wrappers for standard javascript functions, and much more. The jsAPI is installed by default and is already in the PGHS
global scope (window). To view all methods and objects, one needs to call the jsAPI object from the debugger (jsAPI,
console.log(jsAPI), console.dir(jsAPI)).

7.10.1 jsAPI: submit()
Performs page processing (submit) using the {API_URL}/processPage method.

Syntax

Parameters

Items object - the values items are sent in the body of the request {APIURL}/processPage in addition to the main
items of the page. It is allowed to use an empty {} object if no custom values need to be sent.

Callbacks object accepts onSuccess Function, onError Function.

Note: the custom onSuccess handler will not trigger a page reload (overriding the default behavior), if a page reload
and additional logic is required in the custom handler, the jsAPI.reload() method within onSuccess is used.

Examples

Standard call:

Call with additional items values and a successful send and error handler:

(continued from previous page)

,→ color */
--wizard-step-counter-color: #888888; /* Color of text inside the inactive point/

,→ incomplete state */
--wizard-step-active-counter-color: #fff; /* Color of text inside the active point/

,→ completed state */

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

110

Call without additional items values and with a successful send handler:

7.10.2 jsAPI: process()
The jsAPI.process method executes the xhr request {API_URL}/callAction with the following parameters:

pageID (data.page) is the ID of the current page. It is determined automatically. requestName (data.request) The
name of the request. It is defined by the argument requestName items (data.items). Items values are defined by the
items argument.

Syntax

Parameters

• requestName String - Request name

• items Object - the items values sent in the body of the {API_URL}/callAction request. It is allowed to use an
empty {} object if no values are to be sent.

• callbacks Object - accepts functions: onSuccess Function, onError Function.

• onSuccess Function - callback, contains server response (res)

• onError Function - callback, contains server error (err)

Examples

Call without any additional parameters:

A call with items:

Call with items and a successful response handler:

//Any code can be placed here

And after it the page reload will be executed

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

111

Call with items, success and error handlers:

7.10.3 jsAPI: reload()
Renders the page after a successful response to the {API_URL}/showPage?page=id method.

Syntax

Parameters

This function accepts no arguments.

Note is not similar to window.location.reload(). The method calls page re-rendering after successful response of
{API_URL}/showPage method, as it is done when changing the root.

Examples

7.10.4 jsAPI: reloadWindow()
A wrapper for the native method window.location.reload() Reloads the application on the current page.

Syntax

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

112

Parameters

This function accepts no arguments.

Examples

7.10.5 jsAPI: redirect()
Navigates to the specified application page.

Syntax

Parameters

• path String - Relative path to the page

• callbacks - accepts the function: onSuccess Function

Note This method uses internal application routing and is not similar to window.location.href. Changing the
routing does not involve reloading the page.

Examples

Standard call:

Call with handler:

7.10.6 jsAPI: getCurrentPage()
Returns information about the current page in the form:

(continued on next page)

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

113

Syntax

Parameters

This function accepts no arguments.

Examples

Get the page id:

Get item values:

7.10.7 jsAPI: notification
Includes success, error, and warning methods that output the application standard notification.

Notification of successful action

Error notification

Warning (warning)

Parameters

• message String, Array - one message if the argument is specified as a string, or an array of messages if the
argument is specified as an array of strings (output sequentially one after another)

Examples

Successful action message:

Successful Action Messages:

Error message:

(continued from previous page)

Successful action

Successful Action", "Successful Action 2

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

114

Error Messages:

Warning (warning)

Warnings

7.10.8 jsAPI: modal
jsAPI.modal is a module for managing application modal windows.

Methods

Parameters

• options Object - Options for displaying the dialog window. It contains the parameters:

• title String - Window title

• page String - URL of the page that will be displayed in the dialog box

• width Number - Width of the window

• text String - Text displayed in the content part of the dialog window

• buttons Array - Buttons displayed at the bottom of the dialog window

• selector String - Element selector for binding to Dynamic Action (DA)

• minHeight Number - Minimum window height, default 240 v4+

• centered Boolean - Vertical alignment to the center of the page, default false v4+

• callbacks Object Accepts functions:

• onClose (Function) - Executed when the window is closed using the jsAPI.modal.close();, jsAPI.modal.accept()
methods

• onAccept Function - Executed when the window is closed using the jsAPI.modal.accept() method

• onDecline Function - Executed when the window is closed using the jsAPI.modal.close() method

jsAPI.modal.close();

Closes the modal window, calls onClose, onDecline in jsAPI.modal.open

jsAPI.notification.error("Error");

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

115

jsAPI.modal.accept();

Closes the modal window, calls onAccept, in jsAPI.modal.open

Examples

Calling the modal

Standard page call in a modal window

Opening a page in a modal with GET parameters and a selector for binding to a dynamic action

Opening a page in modal with GET parameters, selector for binding to dynamic action and callbacks

width: 420,

Executed at closing

Executed when

the ‘No’ button is pressed and at standard closing of the modal window

Executed when the button "Yes" is pressed

Title

Title

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

116

7.10.9 jsAPI: confirmModal()
Displays a window to confirm an action.

Syntax

Parameters

• options Object - Contains parameters:

• title String - Title of the window,

• text String - Text to be displayed in the dialog window,

• callbacks accepts functions:

• onAccept Function - Executed when the button "Yes" is pressed

• onDecline Function - Executed when the button "No" is pressed and when standard closing is performed

Note This method is a special case of the jsAPI.modal.open call:

(continued on next page)

Title

 Executed at

Title

: 420,

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

117

Example

7.10.10 jsAPI: refresh()
Method jsAPI.refresh is designed to refresh data in the regions.

It executes xhr query {API_URL}/callAction with the following parameters:

Syntax

(continued from previous page)

Executed at closing

Executed when the "No" button is pressed, and at standard closing of the modal window

Executed when the "Yes" button is pressed

title: "Are you sure?"

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

118

Parameters

• data Object - Data to be sent in the request body

• callbacks Object - Accepts functions: onSuccess Function, onError Function.

Note To update a region, one must specify its id in the data parameter:

Examples

Standard call:

Standard call with handlers:

7.10.11 jsAPI: changeTab()
Switches the active tab in a region with the ‘Tabs’ type.

Syntax

Parameters

• id String - id of the region with type "Tabs"

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

119

• tab Integer - Tab sequence number (starting from 1)

Example

7.10.12 jsAPI: component()
jsAPI.component - interface for working with region data within a given context

Syntax

Parameters

• id String - region id

Refresh()

methods

Example

Implemented for the following regions:

• Calendar

• Report

Updates the region with the specified parameters (items). For example, specifying the field name for the region type
{ "calendar":

value of the P50_FULL_NAME field will be added to the body of the /callAction request in addition to the main
parameters.
Request body:

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

120

7.10.13 jsAPI: setItem()
Changes the value of a form item

Syntax

Parameters

• id String - id of the form element. It is NOT a selector (specify without '#').

• value String - Value

Examples

Assign a new value

Clear

7.10.14 jsAPI: getItem()
Returns the value of a form element

Syntax

Parameters

• id String - id of the form element. It is NOT a selector (specify without '#')

Example

7.10.15 jsAPI: updateItem()

Updates the form element parameters at the page level ({API_URL}/showPage)

Syntax

Parameters

• id String - id of the form element. It is NOT a selector (specify without '#')

• parameters Object

Contains parameters:

• label (String) - Placeholder (element label)

• required Boolean - Mandatory filling

• col Integer - Width of the column in the form (from 1 to 12)

• mask (String) - Field mask (works only with TEXT)

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

121

• maxlength Integer - Max. number of characters (works only with TEXT)

Example

7.10.16 jsAPI: hideItem()
Removes a form item from the DOM and the column bound to it

Syntax

Parameters

• id String - id of the form element. It is NOT a selector (specify without '#')

Example

7.10.17 jsAPI: showItem()
Returns the form element (item) in the DOM that was removed using jsAPI.hideItem(id) and the column bound to it

Syntax

Parameters

• id String - id of the form element. It is NOT a selector (specify without '#')

Example

7.10.18 jsAPI: refreshList()
The jsAPI.refreshList method is designed to refresh lists bound to form elements such as Select List, Multiselect,
Autocomplete. Executes an xhr request {API_URL}/callAction with the following parameters:

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

122

Syntax

Parameters

• data Object Data to be sent in the request body

• callbacks Object

The following functions are accepted: onSuccess Function, onError Function.

Note To update a form element, one must specify its id in the data parameter:

Examples

Standard call

Standard call with handlers:

7.10.19 jsAPI: dom.hide()
Hides an element with the specified css selector by adding the css class js-api-hidden

Syntax

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

123

Parameters

• selector String - Element selector

Examples

Example 1:

7.10.20 jsAPI: dom.show()
Displays an element with the specified css selector by removing the css of the js-api-hidden class

Syntax

Parameters

• selector String - Element selector

Examples

Example 1:

7.10.21 jsAPI: dom.focus()
Sets focus on the specified element if it can be focused. Wrapper for native el.focus() method

Syntax

Parameters

• selector String - Element selector

Examples

7.10.22 jsAPI: dom.blur()
Removes keyboard focus from the current element. Wrapper for native method document.activeElement.blur()

Syntax

Parameters

This function accepts no arguments.

Examples

jsAPI.dom.blur();

7.10. jsAPI reference guide

 Documentation, Release 5.1.2

124

7.10.23 jsAPI: dom.setAttribute()
Adds and modifies attributes of an element with the specified selector

Syntax

Parameters

• selector String - Element selector

• attrs Object - Attributes

Examples

7.10.24 jsAPI: debug
Enables and disables different levels of debugging information display. Includes enable and disable.

Activate debug

Deactivate debug

Parameters

• type String - The name of the debugging level.

Available debugging levels

• CRITICAL

• ERROR

• WARNING

• INFO

• DEBUG

Examples

Activate debugging with CRITICAL type:

Deactivate debugging with CRITICAL type:

7.10. jsAPI reference guide 125

 Documentation, Release 5.1.2

7.10.25 jsAPI: logout()
Exits the application (logout) by calling the {API_URL}/logout method

Syntax

Parameters

This function accepts no arguments.

Example

7.10.26 jsAPI: clearLocalStorage()
Deletes all records in the application's localStorage. It is a wrapper of native method window.localStorage.clear();

Syntax

Parameters

This function accepts no arguments.

Example

Export/import

XRAD allows to export and import a page or an entire application. This functionality is useful when you need to
transfer a project to another stand or use the developments of one project in another.

Page export is available in the context menu of the page in the page list (right click - Export). The system will
generate a script with .sql extension to create the page.

7.10. jsAPI reference guide 126

 Documentation, Release 5.1.2

Page import is done by dragging the .sql script file into the page list area.

Warning. The script contains a procedure call that deletes the page before importing. The script also keeps all
identifiers and links inside the components as they are in the database.

Exporting the application is available under Settings - Global. The system will generate a script with .sql extension to
import the entire application.

The application is imported by dragging and dropping the .sql file into the application settings list area.

7.10. jsAPI reference guide 127

 Documentation, Release 5.1.2

Warning. While importing, the script will completely overwrite the applications on the target stand. The script is
executed in one transaction and in case of failure, the target application will remain in its original form.

7.10.27 jsAPI: setLoading()
Sets the loading state for the current page or modal window

Syntax

Parameters

value: boolean - true - show loading status. false - hide loading status.

Example

7.10.28 Loading property
Set the load status for the button/region. Supported regions:

• FORM;

• WRAPPER;

• HTML;

• TILES;

• REPORT;

• TABS;

7.10. jsAPI reference guide 128

 Documentation, Release 5.1.2

• TREE;

• CARDS;

• DATAGRID;

• CHAT;

• CHART;

• CALENDAR.

Syntax

Parameters

loading: boolean - true - show loading status. false - hide loading status.

Example

7.10.29 jsAPI: download()
Download the file via JavaScript, without redirecting or refreshing the page.

This method allows to track the progress of the file download and to process errors that occur during generation.

One can lock the file generation button or display progress information to the user. This can be especially useful

if file generation takes a long time.

Syntax

Parameters

process?: string - The name of the process to be called to download the file

url?: string - URL for downloading a file (file or API method)

method?: "GET| "POST" is the request method. The supported values are GET`|`POST.
data?: Record<string, any>| FormData - data to be sent. For POST method support of FormData data format is
implemented

headers?: Record<string, any> - request headers

7.10. jsAPI reference guide 129

 Documentation, Release 5.1.2

onProgress?: (progress: ProgressEvent)=> void - Callback called when the progress of a file download is updated. One
can use it to display the status of the download. The callback accepts an argument of type [ProgressEvent
(documentation: https://developer.mozilla.org/en-US/docs/Web/API/ProgressEvent)

A callback called when the file download is complete. It accepts a result object that contains: -
response: any - response from the server.

onError?: (error: { error: { title: string; message: string, code: number }, raw: any)=> void - Callback called when an
error occurred while downloading a file: - error.title - short text; - error.message - error message; - error.code - error
code.

Values:

• -2 - failed to decode the response from the server

• 0 - Internet connection error

• 4xx,5xx - the server returned an error.

Examples

Download file generated by fooProcess with data from USERNAME and AGE fields

Download the /test.txt file and display progress

Send data by POST method in FormData object to the address /api/download_file with token header and lock the
button for the download time:

7.10. jsAPI reference guide 130

 Documentation, Release 5.1.2

Downloading completed!

